GENERALIZED HEXAGONS OF ORDER (t, t)

ΒY

ARTHUR YANUSHKA

ABSTRACT

A generalized hexagon of order (t, t) in which certain subsets are maximal may be characterized as the generalized hexagon associated with Dickson's group $G_2(t)$. From this geometric result, it follows that if G is a group of automorphisms of a generalized hexagon of order (p, p) for a prime p and if G has rank 4 on points, then $G \succeq G_2(p)$.

1. Introduction

A finite generalized hexagon of order (s, t) [3] is an incidence structure $S = (\mathcal{P}, \mathcal{B}, I)$, with an incidence relation satisfying the following axioms:

(i) each element of \mathcal{P} , which is called a point, is incident with 1 + t elements of \mathcal{B} , which are called edges, for $t \ge 1$ and each edge is incident with 1 + s points for $s \ge 1$;

(ii) $|\mathcal{P}| = (1+s)(1+st+s^2t^2)$ and $|\mathcal{B}| = (1+t)(1+st+s^2t^2)$;

(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k points and k edges.

The distance of two elements $a, b \in \mathcal{P} \cup \mathcal{B}$ is denoted by d(a, b) or d(b, a). For $x \in \mathcal{P}$, let $x^{\perp} = \{y \in \mathcal{P} : d(x, y) \leq 4\}$ and for distinct points x, y let $R(xy) = \cap \{z^{\perp} : z \in \mathcal{P} \text{ and } x, y \in z^{\perp}\}$.

We note that the only known examples of finite generalized hexagons are those associated with Dickson's group $G_2(q)$, which have order (q, q) where q is a prime power, and those associated with the triality group ${}^{3}D_{4}(q)$, which have order (q^3, q) . We will study the case where s = t.

THEOREM 1.1. Let \mathcal{H} be a generalized hexagon of order (t, t). Suppose |R(xy)| = 1 + t for all pairs (x, y) with d(x, y) = 4. Then \mathcal{H} is isomorphic to the usual hexagon associated with $G_2(t)$.

Received April 28, 1975

A. YANUSHKA

An important tool used for this geometric characterization is a theorem of Buekenhout and Shult [1] on pre-polar spaces. Indeed the incidence structure $(\mathcal{P}, \mathcal{L}, \in)$ where $\mathcal{L} = \mathcal{B} \cup \{R(xy): x, y, \in \mathcal{P}, d(x, y) = 4\}$ forms a pre-polar space. It follows that \mathcal{P} together with its subspaces is the orthogonal geometry of dimension 7 over GF(t) and that t is a prime power. That \mathcal{H} is the generalized hexagon associated with $G_2(t)$ is a consequence of work of Schellekens [5].

Next we study the case where s = t is prime and Aut \mathcal{H} has rank 4 on points.

THEOREM 1.2. Let \mathcal{H} be a generalized hexagon of order (p, p) for a prime p. Suppose G, a subgroup of Aut \mathcal{H} , has rank 4 on points. Then G contains as a normal subgroup a group isomorphic to $G_2(p)$ and \mathcal{H} is isomorphic to the usual hexagon associated with $G_2(p)$.

A group G having a BN-pair whose Weyl group is D_{12} naturally acts as an automorphism group of a generalized hexagon of order (s, t) with s > 1 and t > 1. Thus as an immediate consequence of Theorem 1.2 we have:

COROLLARY 1.3. Let G be a finite group having BN-pair and Weyl group D_{12} . Suppose that |P:B| - 1 is a prime p for each maximal parabolic subgroup P. Then G has a normal subgroup H isomorphic to $G_2(p)$, with the usual BN-pair induced on H.

The basic idea for the proof is to investigate the subgroup structure of a Sylow p-subgroup P of G, in particular to determine the structure of the stabilizers in P of various sets of \mathcal{H} . The method of attack is similar to recent work of Kantor [4] on generalized quadrangles with a prime parameter. Kantor's main result is that if Q is a generalized quadrangle of order (p, t) with p prime and if $G = \operatorname{Aut} Q$ has rank 3 on points, then with some possible exceptions, $G \cong PSp(4, p)$ or PSU (4, p) and Q is one of the usual quadrangles associated with these groups. So Theorem 1.2 is a version of Kantor's theorem for generalized hexagons with equal prime parameters. We note that in order to consider the problem of a generalized hexagon with parameters (s, p) for a prime p, a geometric characterization of hexagons of type (t^3, t) is needed.

Finally the author wishes to thank William Kantor for suggesting the problem to him and for his helpful comments.

2. Lines of a generalized hexagon

Let \mathcal{H} be a generalized hexagon of order (s, t) for s, t > 1. If z is a point or an edge of \mathcal{H} , define for $i = 1, 2, \dots, 6$ the sets $\Gamma_i(z)$ by

$$\Gamma_i(z) = \{ y \in \mathcal{H} : d(y, z) = i \}.$$

For a point x of \mathcal{H} , define the *block* containing x, denoted x^{\perp} , by

$$x^{\perp} = \{x\} \cup \Gamma_2(x) \cup \Gamma_4(x).$$

For two distinct points x, y of \mathcal{H} , define the *line* through x and y, denoted R(xy), as follows:

$$R(xy) = \cap \{z^{\perp} : z \text{ is a point of } \mathcal{H} \text{ with } x, y \in z^{\perp}\}.$$

Note that $x, y \in z^{\perp}$ iff $z \in x^{\perp} \cap y^{\perp}$ and that $u \in R(xy)$ iff $u^{\perp} \supseteq x^{\perp} \cap y^{\perp}$.

Call the line R(xy) singular, hyperbolic or imaginary according as d(x, y) = 2, 4 or 6 respectively.

If d(x, y) = 4, then let $x \wedge y$ denote the unique point of \mathcal{H} with $d(x, x \wedge y) = 2 = d(x \wedge y, y)$.

LEMMA 2.1. If d(x, y) = 2 and L is the edge of \mathcal{H} joining x and y, then $R(xy) = \Gamma_1(L)$.

PROOF. Let $u \in L$ and let $x, y \in z^{\perp}$. If $z \in \Gamma_2(x) \cup \{x\}$, then $d(z, u) \leq d(z, x) + d(x, u) = 4$ and $u \in z^{\perp}$. Similarly if $z \in \Gamma_2(y) \cup \{y\}$, then $u \in z^{\perp}$. Assume now that $z \in \Gamma_4(x) \cap \Gamma_4(y)$. Then $z \wedge x = z \wedge y$; otherwise \mathcal{H} contains the pentagon with vertices $x, x \wedge z, z, y \wedge z, y$. In fact $z \wedge x \in L$; otherwise \mathcal{H} contains the triangle with vertices $x, x \wedge z, y$. Since $u \in L$, it follows that $d(u, z \wedge x) \leq 2$, that $u \in z^{\perp}$ and that $\Gamma_1(L) \subseteq R(xy)$.

Conversely if $u \in R(xy)$, then $u^{\perp} \supseteq x^{\perp} \cap y^{\perp}$. Suppose that $u \in \Gamma_4(x)$. Then $x \wedge u \in L$ lest d(u, y) = 6. If $w \in \Gamma_2(x) \cap \Gamma_4(x \wedge u)$, then d(w, u) = 6 but $w \in x^{\perp} \cap y^{\perp} \subseteq u^{\perp}$, a contradiction. So $u \in \Gamma_2(x) \cup \{x\}$. Similarly $u \in \Gamma_2(y) \cup \{y\}$. It follows that $u \in L$; otherwise x, u, y are the vertices of a triangle of \mathcal{H} . Thus $R(xy) \subseteq \Gamma_1(L)$.

Note that singular lines correspond to edges of \mathcal{H} and that if d(xy) = 2, then $R(xy) = (\Gamma_2(x) \cap \Gamma_2(y)) \cup \{x, y\}.$

Assume the number of points of a hyperbolic line is constant.

LEMMA 2.2. Let d(x, y) = 4. Then

(i) $R(xy) \subseteq \Gamma_2(x \land y) \cap \Gamma_4(w)$ for any $w \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(x \land y)$. In fact the hyperbolic line R(xy) consists of at most one point from each singular line through $x \land y$. Thus $|R(xy)| \leq t + 1$.

(ii) Let h + 1 = |R(xy)|. Then $h \le t$ and h divides st.

PROOF. (i) Let $u \in R(xy)$ and let $z = x \wedge y$. Then $z \in x^{\perp} \cap y^{\perp} \subseteq u^{\perp}$. If $u \in \Gamma_4(z)$, then $u \wedge z$ lies on an edge L through z. Since d(x, y) = 4, WLOG

assume $x \notin L$. Then $d(u \wedge z, x) = 4$ and d(u, x) = 6, a contradiction. So $u \in \Gamma_2(z)$ and $R(xy) \subseteq \Gamma_2(z)$.

If $w \in \Gamma_4(x) \cap \Gamma_4(y) \cap \Gamma_6(z)$, then clearly $R(xy) \subseteq w^{\perp}$. If $v \in R(xy) \cap (\{w\} \cup \Gamma_2(w))$, then WLOG assume $v \neq x$. Since $R(xy) \subseteq \Gamma_2(z)$, it follows that d(z, v) = 2 and $d(z, w) \leq 4$, a contradiction of the choice of w. So $R(xy) \subseteq \Gamma_4(w)$.

Now $\Gamma_2(z) \cap \Gamma_4(w)$ consists of exactly one point $\neq z$ from each singular line through z. Indeed, if L is a singular line on z, then d(L, w) = 5 because d(z, w) = 6. There is a unique point $b \in L - \{z\}$ with d(b, w) = 4 since \mathcal{H} is a generalized hexagon. So $|\Gamma_2(z) \cap \Gamma_4(w)| = t + 1$ and $h \leq t$.

(ii) $\Gamma_2(z) \cap \Gamma_4(x)$ is a union of hyperbolic lines on x with x removed and has order st. Indeed $\Gamma_2(z) \cap \Gamma_4(x)$ is the set of t singular lines on z, distinct from the singular line R(xz) and so has order ts. If $w \in \Gamma_2(z) \cap \Gamma_4(x)$, then $R(xw) - \{x\} \subseteq$ $\Gamma_2(z) \cap \Gamma_4(x)$. To see this, note that by (i) $R(xw) \subseteq \Gamma_2(z)$. If $u \in R(xw) - \{x\}$, then $u \in \Gamma_4(x)$. Otherwise if $u \in \Gamma_2(x)$, then $u \in R(xz) - \{x, z\}$, which contradicts (i). But $\Gamma_6(x) \cap \Gamma_2(z) = \emptyset$ if d(x, z) = 2. So $u \in \Gamma_4(x)$.

Now express $\Gamma_2(z) \cap \Gamma_4(x)$ as a disjoint union of sets $R(xw) - \{x\}$ for $w \in \Gamma_2(z) \cap \Gamma_4(x)$ to see that *h* divides *st*. This is possible due to the following Lemma 2.3.

LEMMA 2.3. If d(x, y) = 4 and if $u \in R(xy) - \{x\}$, then R(xu) = R(xy).

PROOF. If $u \in R(xy) - \{x\}$, then $x^{\perp} \cap u^{\perp} \supseteq x^{\perp} \cap y^{\perp}$. By Lemma 2.2 (i) d(x, u) = 4 and so $|x^{\perp} \cap u^{\perp}| = |x^{\perp} \cap y^{\perp}|$. So $x^{\perp} \cap u^{\perp} = x^{\perp} \cap y^{\perp}$ and R(xu) = R(xy).

From the last two lemmas, it follows that two points at distance 4 are on exactly one hperbolic line and on no singular line and that two distinct hyperbolic lines meet at most in one point. Clearly a similar statement holds for singular lines.

LEMMA 2.4. (i) If d(x, y) = 2, then for \mathcal{P} the set of points of \mathcal{H}

$$\mathcal{P} = \bigcup \{ z^{\perp} : z \in R(xy) \}.$$

(ii) If d(x, y) = 4, then $|R(xy)| \le s + 2$. Also $\mathscr{P} = \bigcup \{z^{\perp} : z \in R(xy)\}$ iff s = t = h.

PROOF. (i) If $a \in \mathcal{P}$, then $\delta = d(a, R(xy)) \in \{1, 3, 5\}$ and there is a unique $z \in R(xy)$ with $d(a, z) = \delta - 1$. Thus $a \in z^{\perp}$.

(ii) Let $R(xy) = \{a_0, a_1, \dots, a_h\}$. Let $A = \bigcup_{i=0}^h a_i^{\perp}$. Now express A as a pairwise disjoint union of sets as follows:

Vol. 23, 1976

$$A = a_0^{\perp} \cup \bigcup_{i=1}^{h} (a_i^{\perp} \cap \Gamma_6(a_0)).$$

Then $|A| = (1 + (t + 1)s + s^{2}(t + 1)t) + hst(st + s - t)$, since $|a_{i}^{\perp} \cap \Gamma_{6}(a_{0})| = |a_{i}^{\perp}| - |a_{i}^{\perp} \cap a_{0}^{\perp}|$. Now

$$|\mathcal{P}| - |A| = st (s^2t - h(st + s - t)) \ge 0,$$

which implies the desired results.

LEMMA 2.5. If s = t = h, then $\{x\} \cup \Gamma_2(x)$ together with the singular and hyperbolic lines contained in this set is a projective plane of order t.

PROOF. $\{x\} \cup \Gamma_2(x)$ has 1 + (1 + t)t points, 1 + t singular lines and t^2 hyperbolic lines. Indeed count the pairs (y, H) with $y \in H \subseteq \Gamma_2(x)$ for H a hyperbolic line. From the proof of Lemma 2.2 (ii) each y lies on st/h = t hyperbolic lines. Thus $\{x\} \cup \Gamma_2(x)$ contains $1 + t + t^2$ lines, each of which contains 1 + t points. Furthermore any 2 points determine a unique line. Therefore $\{x\} \cup \Gamma_2(x)$ is a projective plane with the property that if $y, z \in \{x\} \cup \Gamma_2(x)$, then $d(y, z) \leq 4$ and $y \in z^{\perp}$.

Note that the previous lemma is needed only for the proof of Theorem 1.2.

3. The proof of Theorem 1.1

Assume \mathcal{H} is a generalized hexagon of order (t, t). Assume the hyperbolic lines of \mathcal{H} carry t + 1 points. Let \mathcal{P} be the set of points of \mathcal{H} . Let \mathcal{L} be the set of singular and hyperbolic lines formed from \mathcal{P} . We will show that $(\mathcal{P}, \mathcal{L})$ is a non-degenerate pre-polar space. Since \mathcal{H} is a generalized hexagon, clearly $(\mathcal{P}, \mathcal{L})$ is non-degenerate.

Let p, L be a non-incident point-line pair. Since by Lemma 2.4,

$$\mathscr{P} = \bigcup \{ z^{\perp} : z \in L \},\$$

there is $z \in L$ with $p \in z^{\perp}$. If there is $z' \in L - \{z\}$ with $p \in z'^{\perp}$, then $z, z' \in p^{\perp}$ and $L = R(zz') \subseteq p^{\perp}$ by Lemma 2.3. So p is incident either to one point or to all points of L.

Since $(\mathcal{P}, \mathcal{L})$ is a finite incidence structure, $(\mathcal{P}, \mathcal{L})$ is a pre-polar space of finite rank in which lines carry t + 1 points and which has $(t^6 - 1)/(t - 1)$ points. By Theorem 4 of [1], \mathcal{P} together with its subspaces is a polar space of finite rank. If \mathcal{P} has rank 2, then \mathcal{P} is a generalized quadrangle of order $(t, t^3 + t^2 + t)$ because lines of $(\mathcal{P}, \mathcal{L})$ carry t + 1 points, lines are maximal subspaces and each point lies in 1+t singular and $t^2(t+1)$ hyperbolic lines. But a quadrangle of order $(t, t^3 + t^2 + t)$ contains $(1+t)(1+t(t+t^2+t^3))$ points while $|\mathcal{P}| =$ $(1+t)(1+t^2+t^4)$, a contradiction. So \mathscr{P} has rank ≥ 3 . By theorem 1 of [1], \mathscr{P} is a polar space associated with a classical geometry of symplectic, unitary or orthogonal type. In particular t is a prime power. Since $|\mathscr{P}| = (t^6 - 1)/(t - 1)$, it follows that \mathscr{P} is either a symplectic geometry of dimension 6 or an orthogonal geometry of dimension 7.

If t is even, then \mathcal{P} is an orthogonal geometry of dimension 7 which is isomorphic to a symplectic geometry of dimension 6. If t is odd, then there are two cases to consider. First assume that no imaginary line contains more than two points. Then \mathcal{P} is an orthogonal geometry of dimension 7. Secondly assume that some imaginary line contains more than 2 points. Then \mathcal{P} is a symplectic geometry and so every imaginary line contains more than 2 points. Now there is a plane of the generalized hexagon \mathcal{H} which contains a quadrangle whose diagonal points are collinear. The proof of this statement is found as (13.5) in Schellekens [5]. Thus the characteristic of the underlying field of the polar space is two. This contradicts the assumption that t is odd. Therefore \mathcal{P} is an opthogonal geometry of dimension 7.

The final step of the proof is to identify the generalized hexagon \mathcal{H} , which is now embedded in the orthogonal geometry, with the generalized hexagon associated with $G_2(t)$. For this we refer the reader to section 14 of Schellekens [5].

4. Rank 4 subgroups of Aut \mathcal{H}

Let \mathcal{H} be a generalized hexagon of order (s, t). H_s will denote the set of elements of $H \leq \operatorname{Aut} \mathcal{H}$ fixing the set S, where S is a set of points or lines of \mathcal{H} . H(S) will denote the set of elements of H fixing each element of S.

LEMMA 4.1. Suppose $G \leq \text{Aut } \mathcal{H}$ has rank 4 on points. Then G_L is 2 transitive on the points of L, a line of \mathcal{H} .

PROOF. This is an immediate consequence of the facts that G_x is transitive on $\Gamma_2(x)$ and that s > 1.

LEMMA 4.2. Let $G = \operatorname{Aut} \mathcal{H}$ have rank 4 on the points of \mathcal{H} .

(i) If d(x, u) = 2, then G_{xu} is transitive on $\Gamma_4(x) \cap \Gamma_2(u)$.

(ii) If L is the singular line through x and u, then G_L is transitive on the points of $\Gamma_3(L)$.

(iii) If d(x, u) = 2 and if (s, t+1) = 1, then G_{xu} is transitive on $x^{\perp} \cap \Gamma_6(u) = \Gamma_4(x) \cap \Gamma_6(u)$.

(iv) If (s, t+1) = 1, then G_L is transitive on $\Gamma_5(L)$.

PROOF. (i) If $v \in \Gamma_4(x) \cap \Gamma_2(u)$, then $G_{xv} = G_{xvy}$ since $y = x \wedge v$. Since G is rank 4 on points, $|G_x: G_{xv}| = |\Gamma_4(x)| = s^2 t(t+1)$ and $|G_x: G_{xy}| = s(t+1)$. Thus $|G_{xy}: G_{xyv}| = st = |\Gamma_4(x) \cap \Gamma_2(y)|$.

(ii) Let $z \in \Gamma_3(L)$. Let y be the unique point of L with d(y, z) = 2. Say $y \neq x$. By part (i), $|z^{G_{xy}}| = st$. Since G_L is transitive on the points of L by Lemma 4.1, $|G_L: G_{Lx}| = s + 1$. Since $G_{Lx} \ge G_{xy}$, it follows that $|z^{G_L}| = (s + 1)st = |\Gamma_3(L)|$.

(iii) Note that $|x^{\perp} \cap \Gamma_6(u)| = s^2 t^2$. For if $z \in x^{\perp} \cap \Gamma_6(u)$, then d(z, L) = 5 and x is the unique point of L with d(z, x) = 4. Since G is rank 4 on points, $|G_u: G_{uz}| = s^3 t^2 = |\Gamma_6(u)|$ and $|G_u: G_{ux}| = s(t+1) = |\Gamma_2(u)|$. Then

$$|G_u: G_{uxz}| = s(t+1) \cdot |G_{ux}: G_{uxz}| = s^3 t^2 \cdot |G_{uz}: G_{uxz}|.$$

Since (s, t+1) = 1 by hypothesis, $s^2 t^2$ divides $|G_{ux}: G_{uxz}|$. But

 $z^{G_{xu}} \subseteq x^{\perp} \cap \Gamma_6(u),$

a set of order $s^2 t^2$. Thus $s^2 t^2 = |G_{ux}: G_{uxz}|$.

(iv) The proof follows from (iii) just as (ii) follows from (i).

LEMMA 4.3. Suppose $G \leq Aut \mathcal{H}$ has rank 4 on points. Then G_x is doubly transitive on the lines through x.

PROOF. If x and u are distinct points of a line L, then G_{xL} contains G_{xu} , which is transitive on the points of $\Gamma_4(u) \cap \Gamma_2(x)$ by Lemma 4.2 (i). This implies the desired result.

LEMMA 4.4. Suppose $G \leq \text{Aut } \mathcal{H}$ has rank 4 on points. Let d(x, u) = 2. Then (i) the pointwise stabilizer $G(x^{\perp} \cap u^{\perp})$ is semiregular off $x^{\perp} \cap u^{\perp}$.

If in addition $|G(x^{\perp} \cap u^{\perp})| = t$, then

(ii) for $w \in \Gamma_4(u) \cap \Gamma_6(x)$, the group $G(x^{\perp} \cap u^{\perp})$ is regular on $\Gamma_1(w) - \{R(u, u \land w)\}$.

(iii) Hyperbolic lines carry t + 1 points.

(iv) The group $G(x^{\perp} \cap u^{\perp})$ is regular on $R(vw) - \{v\}$.

PROOF. (i) See (7.4) of [5].

(ii) Let H be the hexagon with vertices x, u, v, w, b, a. A nontrivial element $g \in G(x^{\perp} \cap u^{\perp})$ does not fix R(vw) setwise. Otherwise there is a 5-gon with vertices w, g(w), g(b), a, b, which is impossible. So g moves R(vw) to another singular line on v. If the orbit of R(vw) under $G(x^{\perp} \cap u^{\perp})$ is a proper subset of $\Gamma_1(v) - \{R(vu)\}$, then $G(x^{\perp} \cap u^{\perp})_{R(vw)} \neq 1$ since

$$\left| G(x^{\perp} \cap u^{\perp}) : G(x^{\perp} \cap u^{\perp})_{R(vw)} \right| = \left| R(vw)^{G(x^{\perp} \cap u^{\perp})} \right|.$$

A. YANUSHKA

But a nontrivial element of $G(x^{\perp} \cap u^{\perp})_{R(vw)}$ again implies the existence of a 5-gon. So $|G(x^{\perp} \cap u^{\perp})|$ divides $|\Gamma_1(v) - \{R(vu)\}|$ and the additional assumption that $t = |G(x^{\perp} \cap u^{\perp})|$ gives the desired regular action.

(iii) Let H be the hexagon with vertices x, u, v, w, b, a. Clearly the hyperbolic line R(uw) is a subset of $\Gamma_2(v) \cap \Gamma_4(a)$. The claim is that the two sets are equal. For $z \in \Gamma_2(v) \cap \Gamma_4(a)$, it follows that $z \in R(uw)$ iff $z^{\perp} \supseteq u^{\perp} \cap w^{\perp}$. It suffices to show that $z \in i^{\perp}$ for $i \in u^{\perp} \cap w^{\perp}$ in order to establish the claim.

If d(v, i) = 2, then by the triangle inequality $d(z, i) \le 4$. Note that $d(v, i) \ne 4$. Otherwise the unique path joining v and i does not contain one of R(vu) and R(vw), say R(vw). Then

$$d(i, w) = d(i, v) + d(v, w) = 6,$$

a contradiction. Now assume d(v, i) = 6.

Let v, u, x, a, c, z be the vertices of a hexagon H. By (ii) there is $g_1 \in G(v^{\perp} \cap w^{\perp})$ with $g_1(R(ux)) = R(uh)$ and $g_2 \in G(v^{\perp} \cap u^{\perp})$ with $g_2(R(wb)) = R(wj)$. Put $g = g_2g_1$. Then g fixes u, v, w and z. If g(a) = i, then d(z, i) = 4 since d(z, a) = 4, and so $z \in i^{\perp}$. Now assume $g(a) \neq i$. Note that d(g(a), i) = 6 since otherwise there exists a 4- or a 5-gon. Also d(v, g(a)) = 6 since d(v, a) = 6. Note that g(H) is a hexagon containing the edges R(vu), R(uh), R(vw) and R(wj). So

$$d(R(uh), R(wj) = 6 = d(g(R(ux), g(R(zc))) = d(g(R(wb)), g(R(zc))).$$

In addition

$$\begin{aligned} &d(v, R(uh)) = 3 = d(v, R(wj)) = d(v, g(R(zc))); \\ &d(g(a), R(uh)) = 3 = d(g(a), R(wj)) = d(g(a), g(R(zc))); \\ &d(i, R(uh)) = 3 = d(i, R(wj)). \end{aligned}$$

Finally the claim is that d(i, g(R(zc)) = 3 and so d(i, z) = 4, as desired.

Indeed there is $g_3 \in G(u^{\perp} \cap h^{\perp})$ with $g_3(R(vw)) = R(vz)$ by (ii). Since $g_3(g(a)) = g(a)$, it follows that g(R(wj)) = R(zg(c)). Thus

$$d(i, R(zg(c))) = d(g_3(i), g_3(R(wj))) = d(i, R(wj)) = 3$$

(iv) $G(x^{\perp} \cap u^{\perp})$ acts semiregularly on $\Gamma_2(v) \cap \Gamma_4(a) - \{u\}$ by (i) and this set equals $R(uw) - \{u\}$ by (iii). By computation of orders, there is regular action.

LEMMA 4.5. Assume $G \leq Aut \mathcal{H}$ has rank 4 on points. Assume that $s = t = |G(x^{\perp} \cap u^{\perp})|$ where d(x, u) = 2. Then \mathcal{H} is isomorphic to the usual hexagon for $G_2(s)$ and $G \triangleright G_2(s)$.

PROOF. By Theorem 1.1, \mathcal{H} is isomorphic to the usual hexagon associated with $G_2(s)$ because by hypothesis s = t and by Lemma 4.4 (iv) t = h. Under this isomorphism the set x^{\perp} for $x \in \mathcal{P}$ corresponds to the set of singular points of the orthogonal geometry of dimension 7. Furthermore the elements of $G(x^{\perp} \cap u^{\perp})$ correspond to Siegal transformations of root type 1. (See [6] for the definition and properties of these transformations.) The pair consisting of the point set $\{x\} \cup \Gamma_2(x)$ and of the lines in this set corresponds to a projective plane of order s, which is a singular subspace of the orthogonal geometry by Lemma 2.5. Thus G contains elements which correspond to all the Siegal transformations that are in $G_2(s)$. Since these transformations generate $G_2(s)$,

$$\langle G(x^{\perp} \cap u^{\perp}): x, u \in \mathcal{P} \text{ with } d(x, u) = 2 \rangle \cong G_2(s),$$

as desired. Note that a theorem of Stark [6] also implies the desired result.

LEMMA 4.6. If $g \in Aut \mathcal{H}$ fixes all points on a line L, all lines through a point $x \in L$ and also fixes some line K with d(L, K) = 6, then g = 1.

PROOF. This is a result due to J. Tits. For a proof see Lemma 1 of Faulkner [2].

5. The proof of Theorem 1.2

Let \mathcal{H} be a generalized hexagon of order (p, p) where p is a prime. Suppose $G = \operatorname{Aut} \mathcal{H}$ has rank 4 on the vertices of \mathcal{H} . If p = 2, then \mathcal{H} is isomorphic to the usual hexagon for $G_2(2)$ by Theorem 11.5 of Tits [7]. Assume p > 2. Let P be a Sylow p-subgroup of G. Then $|P| \ge p^5$ since G_x is transitive on $\Gamma_6(x)$, which has order p^5 . The group P fixes some point x because the number of points of \mathcal{H} is $(1+p)(1+p^2+p^4)$. Also P fixes some singular line L on x since the number of singular lines on x is 1+p. Let L = R(xu). Choose points v, w, b and a of \mathcal{H} so that x, u, v, w, b, a are the vertices of a hexagon of \mathcal{H} , which is denoted H. Let N = R(xa) and M = R(uv).

The goal of the proof is to show that $P(x^{\perp} \cap u^{\perp}) \neq 1$ for vertices x, u with d(x, u) = 2. If $P(x^{\perp} \cap u^{\perp}) \neq 1$, then by Lemma 4.4 (ii) and (iii), $|P(x^{\perp} \cap u^{\perp})| = h = p$ and by Lemma 4.5, $G \triangleright G_2(p)$ and \mathcal{H} is the hexagon for $G_2(p)$.

LEMMA 5.1. If g is a p-element of G which fixes each vertex of a hexagon of \mathcal{H} , then g = 1.

PROOF. Suppose g fixes the hexagon with vertices v_1, v_2, \dots, v_6 . Then $g \in G(\Gamma_1(R(v_1v_2)) \cap G(\Gamma_1(v_1)))$. Furthermore g fixes $R(v_4v_5)$ with $d(R(v_1v_2))$, $R(v_4v_5) = 6$. By Lemma 4.6 it follows that g = 1.

A. YANUSHKA

LEMMA 5.2. The group P is transitive on $L - \{x\}$, on $\Gamma_6(x)$, on $\Gamma_2(x) - L$ and has two orbits on $\Gamma_4(x)$, one of length p^3 and one of length p^4 . Furthermore $|P_a: P_{au}| = p$ and $|P| = p^5$ or p^6 .

PROOF. (i) P is transitive on $L - \{x\}$. For $|G_{Lx}: G_{xu}| = p$ since G_L is doubly transitive on the points of L by Lemma 4.1. Then

$$|G_{Lx}: P_{u}| = p \cdot |G_{xu}: P_{u}| = |G_{Lx}: P| \cdot |P: P_{u}|,$$

where $|G_{Lx}: P|$ is a p'-number because P is Sylow in G_{xL} . Thus $p = |P: P_u|$. (ii) P is transitive on $\Gamma_6(x)$. The proof is similar to (i) and omitted.

(iii) P is transitive on $\Gamma_2(x) - L$, a set of order p^2 . Indeed $|G_x: G_{xa}| = (p+1)p$ because G_x is transitive on $\Gamma_2(x)$. Then

$$|G_x: P_a| = (p+1)p \cdot |G_{xa}: P_a| = |G_x: P| \cdot |P: P_a|.$$

So p divides $|P: P_a|$. Suppose $p = |P: P_a|$. Note that

$$|P_a:P_{aw}| \leq |\Gamma_4(a) \cap \Gamma_6(x)| = p^4.$$

It follows that $|P_a: P_{aw}| = p^4$ and that $P_w = P_{wa}$ because $|P: P_w| = p^5$ by (ii). So P_w fixes $a \wedge w = b$, $L \cap w^{\perp} = u$, $u \wedge w = v$ and each vertex of the hexagon H. Thus $P_w = 1$ by Lemma 5.1, and by (ii) $|P| = p^5$. Now no non-trivial p-element can fix 2 points at maximal distance.

But $|P: P_a| = p$ and $|P_{ab}| \ge p^2$ because

$$|P_a:P_{ab}| \leq |\Gamma_2(a) \cap \Gamma_4(x)| = p^2.$$

Since P_{ab} fixes L setwise, $|P_{abu}| \ge p$ where d(b, u) = 6, a contradiction. So $|P: P_a| = p^2$ and (iii) holds.

(iv) $|P: P_v| = p^3$. Indeed $|G_x: G_{xv}| = (p+1)p^3$ since G_x is transitive on $\Gamma_4(x)$. Then

$$|G_{x}:P_{v}| = (p+1)p^{3} \cdot |G_{xv}:P_{v}| = |G_{x}:P| \cdot |P:P_{v}|,$$

where $|v^p|$ is a *p*-power less than or equal to $|\Gamma_4(x) \cap \Gamma_3(L)| = p^3$. Thus $p^3 = |P: P_v|$.

(v) $|P: P_b| = p^4$. Indeed

$$|G_x: P_b| = (p+1)p^3 \cdot |G_{xb}: P_b| = |G_x: P| \cdot |P: P_b|,$$

where $|b^p|$ is a *p*-power less than or equal to $|\Gamma_4(x) \cap \Gamma_5(L)| = p^4$. If $|P:P_b| = p^3$, then $|P_b| \ge p^2$ and $|P_{bu}| \ge p$ where d(b, u) = 6. So $P_w \ne 1$ for $P_w = 1$ implies that no non-trivial *p*-element fixes 2 points at maximal distance. Thus $|P| \ge p^6$, $|P_{bu}| \ge p^2$ and $|P_{buR(uv)}| \ge p$. Now $P_{buR(uv)}$ fixes $R(uv) \cap b^\perp = v$, then $v \land b = w$

and each vertex of the hexagon *H*. By Lemma 5.1, $P_{buR(uv)} = 1$, a contradiction. Thus $|P: P_b| = p^4$.

(vi) Note that $|P_a: P_{au}| = p$. Otherwise $P_a = P_{au} \leq P_u \leq P$ and so P_u fixes a^P . Consequently $P_u = P(\Gamma_2(x))$, which contradicts (iii). So $|P_a: P_{au}| = p$ and then $|P_u: P_{au}| = p^2$.

(vii) By (ii) $|P: P_w| = p^5$. If $P_w = P_{w,R(wb)}$, then P_w fixes $x^{\perp} \cap R(wb) = b$, then fixes $b \wedge x = a$, so fixes each vertex of H and by Lemma 5.1 is trivial. So $|P_w| = 1$ or p.

LEMMA 5.3. If Z(P) denotes the center of P, then $Z(P) \cap P(\Gamma_1(x)) \cap P(\Gamma_1(L)) \neq 1$.

PROOF. Note first that $P(\Gamma_1(x)) = P_N$ and $P(\Gamma_1(L)) = P_u$. Now $|P:P_N| = p$ because G_x is 2-transitive on the lines through x by Lemma 4.3. So $|P_N| \ge p^4$ since $|P| \ge p^5$. Similarly $|P_u| \ge p^4$. If $P_N = P_u$, then $P_{ub} \ne 1$ because $|P_N: P_{ab}| = p^3$ by Lemma 5.2. So $P_w \ne 1$ and $|P| = p^6$. But $|P_{NR(vw)}| \ge p^2$ since $|P_u: P_{u,R(vw)}| = p^3$. Hence $|P_{Nw}| \ge p$ and P_{Nw} fixes $N \cap w^\perp = a$, then $a \land w = b$, so fixes each vertex of the hexagon H. By Lemma 5.1, $P_{Nw} = 1$, a contradiction. Therefore $P_N \ne P_u$ and $P = P_N P_u$. Since $|P_{Nu}| \ge p^3$ and P_{Nu} is normal in P as P_{Nu} is the intersection of two normal subgroups of P, it follows that $Z(P) \cap P_{Nu} \ne 1$.

LEMMA 5.4 (i) If $P_w \neq 1$, then P_w is regular on the set of singular lines through w, unequal to R(wv).

(ii) If $P_w = 1$, then P is transitive on $\Gamma_6(L)$.

PROOF. (i) From (vii) of the proof of Lemma 5.2, $P_{wR(wb)} = 1$. Since $|P_w| = p$, the result follows.

(ii) If $P_w = 1$, then $|P| = p^5$. If $K \in \Gamma_6(L)$, then there are p + 1 paths of length 6 from L to K. Let γ denote the path which goes through $u \in L$. Let v and w denote the points of γ with d(L, v) = 3 and d(L, w) = 5, respectively. By Lemma 5.2, $|P:P_v| = p^3$. So $|P_v:P_{R(vw)}| = p$. For if $P_v = P_{R(vw)}$, then $|P_w| \ge p$. Thus $|P:P_{R(vw)}| = p^4$. Since $P_{R(vw),K} \le P_w = 1$, it follows that $|P_{R(vw)}:P_{R(vw),K}| = p$ and that $|P:P_{R(vw),K}| = p^5 = |\Gamma_6(L)|$.

LEMMA 5.5. The group G has rank 4 on the singular lines of \mathcal{H} .

PROOF. The group G is transitive on the singular lines of \mathcal{H} . Indeed if R(ab) and R(cd) are singular, then there is $g \in G$ with g(a) = c. Since g(b), $d \in \Gamma_2(c)$, an orbit of G_c , there is $h \in G_c$ with h(g(b)) = d. So hg(R(ab)) = R(cd).

Now fix a singular line L. If M_1 and M_2 are singular lines of $\Gamma_2(L)$, then for $u_i \in M_i$ with $d(u_i, L) = 3$, there is $g \in G_L$ with $g(u_1) = u_2$ because G_L is

transitive on the points of $\Gamma_3(L)$ by Lemma 4.2. Since \mathcal{H} is a generalized hexagon, the unique path from L to u of length 3 must be sent by $g \in G_L$ to the unique path of length 3 from L to u_2 . It follows that $g(M_1) = M_2$ and that $\Gamma_2(L)$ is an orbit of G_L .

Since G_L is transitive on $\Gamma_5(L)$ by Lemma 4.2, it follows that G_L is transitive on $\Gamma_4(L)$.

Let $M_1, M_2 \in \Gamma_6(L)$. There are 1 + p paths of length 6 from L to M_i . Fix paths γ_i of length 6 from L to M_i which pass through $u \in L$. If $w_i \in \gamma_i$ with $d(L, w_i) = 5$, then there is $g \in G_L$ with $g(w_1) = w_2$ and $g(\gamma_1^*) = \gamma_2^*$, where γ_i^* denotes the subpath of γ_i from L to w_i . If $g(M_1) = M_2$, we are done. Assume now that $g(M_1) \neq M_2$. If $P_w \neq 1$, then by Lemma 5.4 (i), there is $h \in P_w$ with $h(g(M_1)) = M_2$. If $P_w = 1$, then by Lemma 5.4 (ii), P is transitive on $\Gamma_6(L)$. In either case, $\Gamma_6(L)$ is an orbit of G_L . Therefore G has rank 4 on the lines of \mathcal{H} , as desired.

LEMMA 5.6. Let $P_v = P(\Gamma_2(u))$. Let *i*, *j*, *k* be points of \mathcal{H} with d(i, k) = 4 and $i \wedge k = j$. Let S by a Sylow p-subgroup of $G_{j,R(jk)}$. Then $S_{ik} = S(\Gamma_2(j))$.

PROOF. First we show that $P_{ua} = P(\Gamma_2(x))$. Since G is rank 4 on points, G is transitive on ordered pairs of hyperbolic points at distance 4. There is $g \in G$ with g(x) = a and g(v) = u. Note that

$$x = a \wedge u = g(x) \wedge g(v) = g(x \wedge v) = g(u).$$

Since $P_v = P(\Gamma_2(u))$, it follows that $(P_v)^g = P^g \cap G(\Gamma_2(x))$, a subgroup which fixes x and L. By Sylow's Theorem, there is $h \in G_{xL}$ with $(P^g)^h = P$. By Lemma 5.2, there is $k_1 \in P_{h(u)}$ with $k_1(h(a)) = a$ because

$$|P_u: P_{ua}| = |P_{h(u)}: P_{h(u),h(a)}| = p^2.$$

Also by Lemma 5.2, there is $k_2 \in P_a$ with $k_2(h(u)) = u$ since $|P_a: P_{au}| = p$. Now let $l = k_2 k_1 hg$. Then

$$P_{v}^{l} = P \cap G\left(\Gamma_{2}(x)\right) = P_{xv}^{l} = P_{ua},$$

as desired. By a similar argument, it follows that

$$S_{ik} = S\left(\Gamma_2(j)\right).$$

LEMMA 5.7. Let $P_b = P(\Gamma_2(a))$. Then either $S_{ik} = S(\Gamma_2(j))$ or $S_{ikR(kk')} = S(\Gamma_2(j))$ where d(k, k') = 2 and d(k, j) = 4.

PROOF. Note $P_b = P_{xb} \cap P_{R(xu)} = P(\Gamma_2(a)) \cap P_{R(xu)}$. By Lemma 5.6, $P_b^i = P_{ua} \cap P_{R(uu')} = P(\Gamma_2(x)) \cap P_{R(uu')}$ where d(u, u') = 2 and d(x, u') = 4. Since

 $|P_{ua}: P_{uaR(uv)}| = p$, there is $k_3 \in P_{ua}$ with $k_3(R(uu')) = R(uv)$ and so $P_{uaR(uv)} = P(\Gamma_2(x))_{R(uv)}$. Since $P_{ua} \ge P(\Gamma_2(x))$ and $|P_{ua}: P_{uaR(uv)}| = p$, it follows that either $P_{ua} = P(\Gamma_2(x))$ or $P_{uaR(uv)} = P(\Gamma_2(x))$. Note that in the latter case, $P(\Gamma_2(x))$ fixes $R(uv)^P$ and so fixes $\Gamma_2(L)$ elementwise. Thus $P(\Gamma_2(x)) \le P(\Gamma_2(L))$. The desired result follows by a similar argument.

LEMMA 5.8. Either $P(\Gamma_2(x)) = P_{ua}$ or $P(\Gamma_2(x)) = P_{uaR(uv)}$. In particular $P(\Gamma_2(x)) \neq 1$.

PROOF. If Z denotes $Z(P) \cap P(\Gamma_1(x)) \cap P(\Gamma_1(L))$, then $Z \neq 1$ by Lemma 5.3. Assume first that $Z > Z_a$. Then Z is transitive on $R(xa) - \{x\}$. The group $P_{R(ab)}$ lies in $P(\Gamma_1(x)) \cap P(\Gamma_1(a))$ and is normalized by Z So $P_{R(ab)} \leq P(\Gamma_1(a'))$ for all $a' \in R(xa)$ and $P_{R(ab)} = P(\Gamma_2(R(xa)))$ in \mathcal{H} . Now G is rank 4 on the lines of \mathcal{H} . By the dual of Lemma 5.6, $P(\Gamma_2(L)) = P_{R(av),R(xa)}$ since $R(uv) \wedge R(xa) = L$. The result follows.

Now assume that $Z = Z_a \neq 1$. If in addition Z_a lies in $P(\Gamma_1(a)) \cap P(\Gamma_1(u))$, then Z_a fixes $R(ab)^P$ and $R(uv)^P$ and so fixes each element of $\Gamma_3(x) = R(xa)^{\perp} \cap R(xu)^{\perp}$. Therefore $Z_a = P(\Gamma_3(x)) \neq 1$. Now apply Lemma 4.5 to \mathscr{H}^* , the dual of \mathscr{H} . Assume next that $Z_a \not\leq P(\Gamma_1(a)) \cap P(\Gamma_1(u))$. If $Z_a \not\leq P(\Gamma_1(u))$, then P_v fixes $R(uv)^Z$ pointwise and so $P_v = P(\Gamma_2(u))$. By Lemma 5.6 $P_{ua} = P(\Gamma_2(x))$. If $Z_a \leq P(\Gamma_1(u))$, then $Z_a \not\leq P(\Gamma_1(a))$. The group P_b fixes $R(ab)^Z$ pointwise and so $P_b = P(\Gamma_2(a))$. By Lemma 5.7, either $P_{ua} = P(\Gamma_2(x))$ or $P_{uaM} = P(\Gamma_2(x))$.

LEMMA 5.9. If $P_w \neq 1$, then $P(x^{\perp} \cap u^{\perp}) \neq 1$.

PROOF. Let $X = Z(P) \cap P(\Gamma_2(x))$. By Lemma 5.8, it follows that $X \neq 1$. If $X_v \neq 1$, then X_v fixes v^P pointwise since X_v is a central subgroup. By Lemma 5.2, it follows that X_v fixes $\cup \{\Gamma_2(y) \cup \{y\}: y \in L\} = x^{\perp} \cap u^{\perp}$ pointwise. Thus $X_v = P(x^{\perp} \cap u^{\perp})$ and now apply Lemma 4.5 to \mathcal{H} .

Assume now that $X_v = 1$. If $X_{R(uv)} \neq 1$, then $X_{R(uv)}$ fixes $R(uv)^P$ pointwise and so $X_{R(uv)} \leq P(\Gamma_2(L))$. Let $Z = Z(P) \cap P(\Gamma_2(x)) \cap P(\Gamma_2(L))$. Then $Z = X_{R(uv)} \neq 1$. If $Z_b \neq 1$, then Z_b fixes $b^{\perp} \cap R(uv) = \{v\}$; but $X_v = 1$, a contradiction. If $Z_{R(ab)} \neq 1$, then $Z_{R(ab)}$ fixes $R(ab)^P$. Since $|P:P_b| = p^4$ by Lemma 5.2, $Z_{R(ab)}$ fixes elementwise

$$\{x\} \cup \Gamma_3(x) = R(xu)^{\perp} \cap R(xa)^{\perp}.$$

Because G is rank 4 on singular lines by Lemma 5.5, apply Lemma 4.5 to \mathcal{H}^* , the dual of \mathcal{H} .

Assume now that $Z_{R(ab)} = 1$. Then Z is regular on the set of singular lines, unequal to R(xa), through a. Since P_b fixes R(ab) pointwise, P_b fixes

$$R(ab)^{z} \cup R(ax) = \Gamma_{2}(a)$$

pointwise and $P_b = P(\Gamma_2(a))$. It follows by Lemma 5.7 that either $P(\Gamma_2(x)) = P_{ua}$ or that $P(\Gamma_2(x)) = P_{uaR(uv)}$. So $P_w = P_{uwR(ux)}$ fixes $\Gamma_2(v)$ pointwise. Indeed pick S to be a Sylow p-subgroup of $G_{vR(vu)}$ with $S \ge P_w$. By Lemma 5.6, $S_{uwR(ux)}$ fixes $\Gamma_2(v)$ pointwise and $S_{uwR(ux)} \ge P_w$. Because $Z = X_{R(uv)}$ is regular on $R(uv) - \{u\}$, it follows that P_w fixes $\Gamma_2(v)^Z$ pointwise. Since $P_w \le P_{R(vw)} = P_{vxR(vw)}$ and $P_{vxR(vw)}$ fixes $\Gamma_2(u)$ pointwise, P_w fixes elementwise

$$\cup \{\Gamma_2(v'): v' \in R(uv)\} = u^{\perp} \cap v^{\perp}.$$

If $P_w \neq 1$, then apply Lemma 4.5 to \mathcal{H} .

Finally assume $X_{R(uv)} = 1$. Then X is regular on the set of singular lines through u, unequal to R(ux). So P_v fixes $R(uv)^x$ pointwise and fixes $\Gamma_2(u)$ pointwise. If $v' \in \Gamma_2(u) - \{R(uv) \cup L\}$, then there is $g \in X$ with g(R(uv)) =R(uv') where d(g(v), w) = 6. By Lemma 5.6, P_w fixes $\Gamma_2(v)$ pointwise. So $P_w^g = P_w$ fixes $\Gamma_2(g(v))$ pointwise. Now choose points y and z so that g(v), u, v, w, y and z are the vertices of a hexagon of \mathcal{H} . Since $z \in \Gamma_2(g(v))$, it follows that P_w fixes z, so $z \land w = y$ and P_w fixes each vertex of the hexagon. By Lemma 5.1, $P_w = 1$. This completes the proof of the lemma.

Now assume that $P_w = 1$. So $|P| = p^5$ and no non-trivial *p*-element can fix 2 points at maximal distance. Since G has rank 4 on lines, $P_K = 1$ for $K \in \Gamma_6(L)$ and no non-trivial *p*-element can fix 2 singular lines at maximal distance.

By Lemma 5.2, $|P: P_u| = p$ and $|P: P_a| = p^2$. Now $|P: P_{ua}| = p^3$ and $|P_{ua}| = p^2$. For if $P_{ua} = P_a$, then since $|P_a: P_{ab}| = p^2$, the group P_{ab} is nontrivial and fixes b, u with d(b, u) = 6, a contradiction. By the principle of duality, $|P_{MN}| = p^2$. We will derive a contradiction by studying the subgroups of P_{ua} and P_{MN} . The argument is similar to Kantor's [4].

LEMMA 5.10. $P_{ua} = P(\Gamma_2(x))$ and $P_{MN} = P(\Gamma_2(L))$.

PROOF. By Lemma 5.8, either $P_{ua} = P(\Gamma_2(x))$ or $P_{uaM} = P(\Gamma_2(x))$. Suppose $P(\Gamma_2(x)) = P_{uaM}$ of order *p*. Let *S* be a Sylow *p*-subgroup of G_{xN} with $S \ge P_{uaM}$. By Lemma 5.7, $S(\Gamma_2(x)) = S_{uaR(ab)}$. Now

$$S(\Gamma_2(x)) = S \cap G(\Gamma_2(x)) \ge P_{uaM} = P(\Gamma_2(x)).$$

By orders, $S(\Gamma_2(x)) = P(\Gamma_2(x))$. But $S(\Gamma_2(x))$ fixes R(ab) while $P(\Gamma_2(x))$ fixes M with d(R(ab)), M) = 6, a contradiction. Hence $P_{ua} = P(\Gamma_2(x))$. Dually, $P_{MN} = P(\Gamma_2(L))$.

By Lemma 5.2, $|P_{ua}: P_{uaM}| = p$ and so $P_{uaM} = P_{MNa}$ has order p. Furthermore

 $P_{MNa} = P_{MN} \cap P_{ua} \leq P$ and so $Z = Z(P) \cap P_{MNa} \neq 1$ and $Z = P_{MNa}$. It follows that $P_{ua}P_{MN} = P_{uN}$, a group of order p^3 .

LEMMA 5.11. P_{MN} has a set of p + 1 distinct subgroups of order p, namely $\{P_{MN}(\Gamma_2(y)): y \in L\}$.

PROOF. If $y \in L$ and $z \in \Gamma_2(y) - L$, then P_{MN} fixes R(yz) setwise since $R(yz) \in \Gamma_2(L)$ and so $|P_{MN}: P_{MNz}| = 1$ or p. If $P_{MN} = P_{MNz}$, then P_{MNa} fixes a and z with d(a, z) = 6, a contradiction. So P_{MNz} has order p, fixes $R(yz) - \{y, z\}$ setwise and so fixes $\Gamma_2(y)$ pointwise. Indeed

$$P_{MNz} = P_{MN} \cap P_{xz} = P_{MN} \cap P(\Gamma_2(y))$$

by Lemma 5.6. If $y' \in L - \{y\}$ and $z' \in \Gamma_2(y') - L'$, then $P_{MNz} \neq P_{MNz'}$ because d(z, z') = 6. This completes the proof of the lemma.

Now $P_{MN} = P(\Gamma_2(L))$ is a Sylow *p*-subgroup of $G(\Gamma_2(L) \cup \{L\})$. By Lemma 4.1, G_L is doubly transitive on the points of *L*. Hence by the Frattini argument, $N(P_{MN})_L$ is doubly transitive on the set of p + 1 subgroups and induces at least SL(2, p) on P_{MN} , because

$$G_L = N(P_{MN})_L \cdot G(\Gamma_2(L) \cup \{L\}).$$

LEMMA 5.12. P_{ua} has a set of p + 1 distinct subgroups of order p, namely $\{P_{ua}(\Gamma_2(R)): R \text{ is a line on } x\}$.

The proof is the dual of the previous proof and is omitted.

By Lemma 4.3, G_x is doubly transitive on the singular lines through x. The group $P_{ua} = P(\Gamma_2(x))$ is a Sylow p-subgroup of $G(\Gamma_2(x) \cup \{x\})$. By the Frattini argument, $N(P_{ua})_x$ is doubly transitive on the set of p + 1 subgroups of P_{ua} and induces at least SL(2, p) on P_{ua} .

In view of the action of $N(P_{ua})_x$ on P_{ua} , there is a 2-element $t \in N(P_{ua})_x \cap N(P_{MN})$ which inverts P_{ua} and centralizes P_{MN}/Z . Then t normalizes each of the p + 1 subgroups of P_{ua} corresponding to the lines on x and so $t \in G(\Gamma_1(x))$. Similarly there is a 2-element $t' \neq t$ with $t' \in N(P_{MN})_L \cap N(P_{ua})$ which inverts P_{MN} and centralizes P_{ua}/Z . Then $t' \in G(\Gamma_1(L))$. We assume that $\langle t, t' \rangle \leq N(P_{uN})$ is a 2-group.

Now tt' centralizes Z and inverts P_{uN}/Z . Hence $tt' \in G(\Gamma_1(x)) \cap G(\Gamma_1(L))$. For $y \in L - \{x\}$, the element tt' fixes $\Gamma_1(y)$ and so fixes one of the p lines $\neq L$ on y, say L_1 . Since tt' fixes $L_1 - \{y\}$, it fixes one of the p points of $L_1 - \{y\}$. Now $Z = P_{MNa} \leq P(\Gamma_1(y))$ and is transitive on $L_1 - \{y\}$, lest Z fix a and i with d(a, i) = 6. Since tt' centralizes Z, it follows that $tt' \in G(\Gamma_1(L_1))$. Similarly for $u \in L - \{x, y\}$, the element $tt' \in G(\Gamma_1(L_2))$ for some $L_2 \neq L$ on u. Let $i \in L_1 - \{y\}$ and $j \in L_2 - \{u\}$. Since tt' fixes $\Gamma_1(j)$, it fixes one of the p lines $\neq L_1$ on j, say K. Because d(j, i) = 6, it follows that d(K, i) = 5. Let K, m_1, K_1, m_2, K_2 , i be the unique path of \mathcal{H} joining K to i. Then tt' must fix this path. Otherwise the vertices $i, m_2, m_1, tt'(m_1), tt'(m_2)$ form either a quadrangle or a pentagon of \mathcal{H} since tt' fixes the line K and the vertex i, a contradiction. Thus tt' fixes the vertices of the hexagon y, u, j, m_1, m_2, i . In particular tt' fixes L = R(uy) and $K_1 = R(m_1m_2)$ with $d(L, K_1) = 6$. Since tt' fixes all points of L and all lines on $x \in L$, it now follows by Lemma 4.6 that tt' = 1. This contradiction completes the proof of Theorem 1.2.

REFERENCES

1. F. Buekenhout and E. Shult, On the foundations of polar geometry, Geometriae Dedicata 3 (1974), 155-170.

2. J. R. Faulkner, Hexagonal geometries which admit all elations (to appear).

3. W. Feit and G. Higman, *The nonexistence of certain generalized polygons*, J. Algebra 1 (1964), 114–131.

4. W. M. Kantor, Generalized quadrangles having a prime parameter, Israel J. Math. (to appear).

5. G. J. Schellekens, On a hexagonic structure I, II, (Nedrl. Akad. Wetensch. Proc. A65 =) Indag. Math. 24 (1962), 201-234.

6. B. S. Stark, Some subgroups of $\Omega(V)$ generated by groups of root type 1, Illinois J. Math. 17 (1973), 584-607.

7. J. Tits, Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Études Sci. Publ. Math. 2 (1959), 14-60.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MICHIGAN

ANN ARBOR, MI 48109 U.S.A.