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G E N E R A L I Z E D  H E X A G O N S  OF O R D E R  (t,t) 

BY 

ARTHUR YANUSHKA 

ABSTRACT 

A generalized hexagon of order (t, t) in which certain subsets are maximal may 
be characterized as the generalized hexagon associated with Dickson's group 
G2(t). From this geometric result, it follows that if G is a group of automorph- 
isms of a generalized hexagon of order (p, p) for a prime p and if G has rank 4 
on points, then G ~G2(p). 

1. Introduction 

A finite generalized hexagon of order  ( s , t )  [3] is an incidence s t ructure  

S = (~ ,  ~ ,  I) ,  with an incidence relat ion satisfying the following axioms:  

(i) each e l emen t  of ~,  which is called a point ,  is incident with 1 + t e lements  

of ~ ,  which are called edges, for t -> 1 and each edge is incident with 1 + s points  

for s -> 1; 

(ii) I ~ l  = ( l + s ) ( l + s t + s 2 t  2) and I ~ l  = ( l + t ) ( l + s t + s 2 t 2 ) ;  

(iii) 6 is the smallest  posi t ive integer  k such that  S has a circuit consisting of k 

points and k edges. 

The  distance of two e lements  a, b E ~ U ~ is deno ted  by d(a,b) or d(b,a). 
For x E ~,  let x I = {y E ~ :  d(x,y)-<4} and for  distinct points  x, y let R ( x y )  = 

¢"l{zl: z E ~ and x ,y  E z~}. 

We note  that  the only known examples  of finite general ized hexagons  are 

those associated with Dickson ' s  g roup  G2(q), which have  o rder  (q, q)  where  q is 

a pr ime power ,  and those associated with the triality group  3D4(q), which have 

order  (q3, q). We will s tudy the case where  s = t. 

THEOREM 1.1. Let ~ be a generalized hexagon of order ( t , t ) .  Suppose 

I R (xy ) [  = 1 + t for all pairs (x, y)  with d(x, y)  = 4. Then ~( is isomorphic to the 

usual hexagon associated with G2(t). 
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An important tool used for this geometric characterization is a theorem of 

Buekenhout  and Shult [l] on pre-polar spaces. Indeed the incidence structure 

(~,5°, ~ ) w h e r e  ~ = ~ U { R ( x y ) : x , y , ~ , d ( x , y ) = 4 }  forms a pre-polar 

space. It follows that ~ together with its subspaces is the orthogonal geometry of 

dimension 7 over GF(t)  and that t is a prime power. That Y( is the generalized 

hexagon associated with G2(t) is a consequence of work of Scbellekens [5]. 

Next we study the case where s = t is prime and Aut YE has rank 4 on points. 

THEOREM 1.2. Let Y( be a generalized hexagon of order (p, p) [or a prime p. 

Suppose G, a subgroup of Aut Y(, has rank 4 on points. Then G contains as a 

normal subgroup a group isomorphic to G2(p) and g( is isomorphic to the usual 

hexagon associated with G2(p ). 

A group G 

automorphism 

t > 1. Thus as 

having a BN-pair whose Weyl group is D12 naturally acts as an 

group of a generalized hexagon of order (s, t) with s > 1 and 

an immediate consequence of Theorem 1.2 we have: 

COROLLARY 1.3. Let G be a finite group having BN-pair and Weyl group D,2. 

Suppose that I P: B [ - 1 is a prime p for each maximal parabolic subgroup P. 

Then G has a normal subgroup H isomorphic to G2(p), with the usual BN-pair 

induced on H. 

The basic idea for the proof is to investigate the subgroup structure of a Sylow 

p-subgroup P of G, in particular to determine the structure of the stabilizers in P 

of various sets of gg. The method of attack is similar to recent work of Kantor [4] 

on generalized quadrangles with a prime parameter.  Kantor's main result is that 

if O is a generalized quadrangle of order (p, t) with p prime and if G = Aut O 

has rank 3 on points, then with some possible exceptions, G ~ PSp(4, p) or 

PSU (4, p) and O is one of the usual quadrangles associated with these groups. 

So Theorem 1.2 is a version of Kantor's theorem for generalized hexagons with 

equal prime parameters. We note that in order to consider the problem of a 

generalized hexagon with parameters  (s, p) for a prime p, a geometric character- 

ization of hexagons of type (t 3, t) is needed. 

Finally the author wishes to thank William Kantor for suggesting the problem 

to him and for his helpful comments. 

2. Lines of a generalized hexagon 

Let ~ be a generalized hexagon of order (s, t) for s, t > 1. If z is a point or an 

edge of ~', define for i = 1 , 2 , - . . , 6  the sets F~(z) by 
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F , (z )  = {y E YY: d(y,  z )  = i}. 

For  a point  x of ~ ,  define the block containing x, deno ted  x l, by 

x I = {x} u r2(x) U r,(x). 

For  two distinct points  x, y of ~ ,  define the line through x and y, deno ted  

R ( x y ) ,  as follows: 

R ( x y ) =  N{zJ:z  i s a p o i n t o f  YC with x, y E z i } .  

Note  that  x, y E z  I iff z E x  ~ N y i  and that u E R ( x y )  iff u •_Dx l A y • .  

Call the line R (xy)  singular, hyperbolic or imaginary according as d(x, y)  = 2, 

4 or  6 respect ively.  

If d(x, y)  = 4, then let x A y deno te  the unique point  of ~ with d(x,x A y)  = 

2 = d(x ^ y ,y ) .  

LEMMA 2.1. If d(x, y ) =  2 and L is the edge of YC joining x and y, then 

R ( x y )  = r , ( L ) .  

PROOF. Let  u E L  and let x, y E z  ~. If z E F d x ) U { x } ,  then d(z ,u)  < 

d ( z , x ) + d ( x , u ) = 4  and u E z ~ .  Similarly if z E F f f y ) U { y } ,  then u E z ~ .  

Assume  now that  z E F 4 ( x ) n  F4(y). Then  z A X ---- Z A y;  o therwise  ~ contains  

the pen tagon  with vertices x ,x  A Z, Z, y A Z, y. In fact z A X E L ;  o therwise  

contains  the tr iangle with vert ices x ,x  A Z, y. Since u E L, it follows that  

d(u,z A X)_--<2, that  u E z  ~ and that  G(L)C_R(xy). 
Converse ly  if u E R (xy),  then u • _D x ~ n y I. Suppose  that  u E F4(x). Then  

X A u E L  lest d ( u , y ) = 6 .  If w E F f f x ) N G ( X A U ) ,  then d ( w , u ) = 6  but 

w E x • n y~ _c u •, a contradict ion.  So u E F2(x) U {x }. Similarly u E F2(y) U {y }. 

It follows that  u E L ; o therwise  x, u, y are the vert ices of a tr iangle of ~ .  Thus  

R ( x y )  C_ F,(L) .  

Note  that  singular lines co r respond  to edges of ~ and that  if d ( x y )  = 2, then 

R (xy)  = (r2(x) n G ( y ) )  u {x, y }. 

Assume  the n u m b e r  of points  of a hyperbol ic  line is constant .  

LEMMA 2.2. Let d(x,y) = 4. Then 

(i) R ( x y ) C F 2 ( x  A y ) n F 4 ( w )  for any wCF4(x)nF4(y)r3F6(x Ay).  In fact 

the hyperbolic line R (xy)  consists of at most one point from each singular line 

through x A y. Thus IR(xy)[<=t + l. 

(ii) Let h + 1 = ] R (xy )[. Then h <= t and h divides st. 

PROOF. (i) Let  u E R ( x y )  and let z = x A y .  Then  z E x i n y l C _ u L  If 

u E F4(z), then u A Z lies on an edge L through z. Since d(x, y ) =  4, W L O G  



312 A. YANUSHKA Israel J. Math. 

assume x~_L. Then d ( u ^ z , x ) = 4  and d(u ,x )=6,  a contradiction. So 

u E F2(z) and R (xy) C F2(z). 

If wEF4(x)nF4(y)NF~(z) ,  then clearly R(xy)C_w 1. If v E R ( x y )  
N ({w} U F2(w)), then WLOG assume v ¢ x .  Since R (x y )C  F2(z), it follows that 

d ( z , v ) = 2  and d(z,w)<=4, a contradiction of the choice of w. So R ( x y ) C  

r4(w). 
Now F2(z)n  F,(w) consists of exactly one point ~ z from each singular line 

through z. Indeed, if L is a singular line on z, then d ( L , w ) = 5  because 

d(z, w) = 6. There is a unique point b E L - {z} with d(b, w) = 4 since ~ is a 

generalized hexagon. So IF2(z)N l'4(w)l = t +  1 and h ~ t. 

(ii) l'2(z) N F4(x) is a union of hyperbolic lines on x with x removed and has 

order st. Indeed F2(z) n L ( x )  is the set of t singular lines on z, distinct from the 

singular line R (xz) and so has order ts. If w E F~(z ) N F~(x), then R (xw) - {x } C_ 
F2(z) N l'4(x). To see this, note that by (i) R (xw) C_ F2(z). If u ~ R (xw) - {x I, 
then u E F 4 ( x ) .  Otherwise if u E F 2 ( x ) ,  then u E R ( x z ) - { x , z } ,  which con- 

tradicts (i). But F6(x)N F2(z) = Q if d(x,z)  = 2. So u E F4(x). 

Now express F2(z)NF4(x)  as a disjoint union of sets R ( x w ) - { x }  for 

w E F2(z) n F4(x) to see that h divides st. This is possible due to the following 

Lemma 2.3. 

LEMMA 2.3. If d ( x , y ) = 4  and if u E R(xy ) - {x} ,  then R(xu)= R(xy).  

PROOF. If u E R ( x y ) - { x } ,  then x l n u l ~ x ± N y  I. By Lemma 2.2 (i) 

d(x ,u )=4  and so I x i n u ~ l = l x ~ n y ~ l .  So x l n u l = x ~ n y  ~ and R(xu)= 

R (xy). 
From the last two lemmas, it follows that two points at distance 4 are on 

exactly one hperbolic line and on no singular line and that two distinct 

hyperbolic lines meet at most in one point. Clearly a similar statement holds for 

singular lines. 

LEMMA 2.4. (i) If d(x, y) = 2, then for ~ the set of points of 

= U { z ~ : z E R ( x y ) } .  

(ii) If d(x, y) = 4, then I R(xy)l-<_ s + 2. Also ~' = u {zl: z ~ R(xy)} if/s = 

t = h .  

PROOF. (i) If a E ~, then 3 = d(a, R (xy )) ~ {1, 3, 5} and there is a unique 

z ~ R(xy)  with d(a,z)  = 6 -  1. Thus a E z I. 

(ii) Let R(xy)={ao, a~,'",ah}. Let A =U~=oa{.  Now express A as a 

pairwise disjoint union of sets as follows: 
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h 

A = a ~ U  U (atf'lF6(a,,)). 
i - I  

Then IA I = ( l  +( t  + l ) s  + s2(t + l ) t )+  hst(st + s -  t), since lat nr~(ao)l= 
l a ? l - J a t n a ~ ,  f. Now 

I ~ I - I A  [= s t ( s 2 t - h ( s t  + s - t ) ) > - O ,  

which implies the desired results. 

LEMMA 2.5. If  S = t = h, then {x}U Fffx) together with the singular and 

hyperbolic lines contained in this set is a projective plane of order t. 

PROOF. {X} U F2(x) has 1 + (1 + t)t points, 1 + t singular lines a-nd t ~ hyper- 

bolic lines. Indeed count the pairs (y, H) with y E H C F2(x) for H a hyperbolic 

line. From the proof of Lemma 2.2 (ii) each y lies on st/h = t hyperbolic lines. 

Thus {x} U I'ffx) contains 1 + t + t 2 lines, each of which contains 1 + t points. 

Furthermore any 2 points determine a unique line. Therefore {x} U F2(x) is a 

projective plane with the property that if y, z E {x} U F2(x), then d(y, z) _-< 4 and 

y E z  I. 

Note that the previous lemma is needed only for the proof of Theorem 1.2. 

3. The proof of Theorem 1.1 

Assume 9( is a generalized hexagon of order (t, t). Assume the hyperbolic 

lines of Y( carry t + 1 points. Let ~ be the set of points of ~(. Let L¢ be the set of 

singular and hyperbolic lines formed from ~. We will show that (~,37) is a 

non-degenerate pre-polar space. Since Y¢ is a generalized hexagon, clearly 

(~, 37) is non-degenerate. 

Let p, L be a non-incident point-line pair. Since by Lemma 2.4, 

~ =  U { z ~ : z E L } ,  

there is z E L with p E z I. If there is z ' E  L -{z}  with p @ z '±, then z , z ' E p "  

and L = R(zz ')C_ p~ by Lemma 2.3. So p is incident either to one point or to all 

points of L. 

Since (~, Lf) is a finite incidence structure, (~, 5¢) is a pre-polar space of finite 

rank in which lines carry t + 1 points and which has (t 6 -  1)/(t - 1) points. By 

Theorem 4 of [1], ~ together with its subspaces is a polar space of finite rank. If 

has rank 2, then ~ is a generalized quadrangle of order (t, t 3 + t z + t )  because 

lines of (~, 37) carry t + 1 points, lines are maximal subspaces and each point lies 

in l + t  singular and t 2 ( t + l )  hyperbolic lines. But a quadrangle of 

order (t,t 3 + t  2+ t )  contains ( l + t ) ( l + t ( t + t  ~+t3)) points while I ~ l =  
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(1 + t)(1 + t2+ t"), a contradiction. So ~ has rank => 3. By theorem 1 of [1], ~ is 

a polar space associated with a classical geometry of symplectic, unitary or 

orthogonal type. In particular t is a prime power. Since l ~ I  = (t ~ -  1)/(t - 1), it 

follows that ~ is either a symplectic geometry of dimension 6 or an orthogonal 

geometry of dimension 7. 

If t is even, then ~ is an orthogonal geometry of dimension 7 which is 

isomorphic to a symplectic geometry of dimension 6. If t is odd, then there are 

two cases to consider. First assume that no imaginary line contains more than 

two points. Then ~ is an orthogonal geometry of dimension 7. Secondly assume 

that some imaginary line contains more than 2 points. Then ~ is a symplectic 

geometry and so every imaginary line contains more than 2 points. Now there is 

a plane of the generalized hexagon 9( which contains a quadrangle whose 

diagonal points are coUinear. The proof of this statement is found as (13.5) in 

Schellekens [5]. Thus the characteristic of the underlying field of the polar space 

is two. This contradicts the assumption that t is odd. Therefore ~ is an 

ophogonal  geometry of dimension 7. 

The final step of the proof is to identify the generalized hexagon 9(, which is 

now embedded in the orthogonal geometry, with the generalized hexagon 

associated with G2(t). For this we refer the reader to section 14 of Schellekens 

[51. 

4. Rank 4 subgroups of Aut 9( 

Let 9( be a generalized hexagon of order (s, t). Hs will denote the set of 

elements of H _-< Aut 9( fixing the set S, where S is a set of points or lines of 9(. 

H ( S )  will denote the set of elements of H fixing each element of S. 

LEMIvIA 4.1. Suppose G <= Aut 9(has  rank 4 on points. Then GL is 2 transitive 

on the points of L, a line of 9(. 

PROOV. This is an immediate consequence of the facts that G~ is transitive on 

F2(x) and that s > 1. 

LEMMA 4.2. Let G = Aut 9( have rank 4 on the points of 9(. 

(i) I f  d(x, u) = 2, then Gx, is transitive on G(x)  A F2(u). 

(ii) l f  L is the singular line through x and u, then GL is transitive on the points of 

F3(L). 

(iii) If  d(x, u) = 2 and if (s, t + l) = 1, then Gx. is transitive on x I N F~(u) = 

r (x) n 

(iv) If  (s, t + 1) = 1, then GL is transitive on rdL). 
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PROOF. (i) If V E F4(x) O G(u),  then Gx~ = Gxv~ since y = x ^ v. Since G is 

rank 4 on points, [Gx: G~ ] = ]F4(x)l = s2t(t  + 1) and [G~: G ,  [= s(t  + 1). Thus 

I o . :  o . o  [= st = I r4(x) n r2(y)l .  
(ii) Let z E F3(L). Let y be the unique point of L with d(y, z) = 2. Say y / x .  

By part (i), ] z %  [ = st. Since GL is transitive on the points of L by Lemma 4.1, 

[GL: GLx 1= s + 1. Since GL, _--> G, ,  it follows that [zCL ] = (s + 1)st = ]F3(L)I. 

(iii) Note that Ix ~ n F,(u)[ = s~tL For if z E x ~ N F,(u), then d ( z , L )  = 5 and 

x is the unique point of L with d ( z , x ) = 4 .  Since G is rank 4 on points, 

I O.: O.= I = s~ta= IF~(u)l and l G.: G.. I = s(t + l ) =  IG(u)l. Then 

I G , : G , ~ [ = s ( t + I ) . [ G , ~ : G . ~ = I = s 3 t ~ . I G , ~ : G , ~ z [ .  

Since (s, t + 1) = 1 by hypothesis, s2t 2 divides I G,, : G,,, 1. But 

z~.. G x~ n r~(u), 

a set of order s~t ~. Thus s2t ~ = I G,~: G.~z I. 

(iv) The proof follows from (iii) just as (ii) follows from (i). 

LEMMA 4.3. Suppose G <= Aut ~ has rank 4 on points. Then G~ is doubly 

transitive on the lines through x. 

PROOF. If x and u are distinct points of a line L, then GxL contains G~,, 

which is transitive on the points of F4(u) n F2(x) by Lemma 4.2 (i). This implies 

the desired result. 

LEMMA 4.4. Suppose G <= Aut Yf has rank 4 on points. Let d(x, u) = 2. Then 

(i) the pointwise stabilizer G (x ~ n u ~) is semiregular off x ~ n u ~. 

I f  in addition [ G(x  ~ n u ~)1 = t, then 

(ii) for w E F , ( u ) N F ~ ( x ) ,  the group G ( x ~ n u  ~) is regular on F,(w)- 
{ R ( u ,  u ^ w)}. 

(iii) Hyperbolic lines carry t + 1 points. 

(iv) The group G ( x + n  u ±) is regular on R ( v w ) - { v } .  

PROOF. (i) See (7.4) of [5]. 

(ii) Let H be the hexagon with vertices x, u, v, w, b, a. A nontrivial element 

g E G ( x  ~ O u ~) does not fix R ( v w )  setwise. Otherwise there is a 5-gon with 

vertices w, g(w) ,  g(b),  a, b, which is impossible. So g moves R ( v w )  to another 

singular line on v. If the orbit of R ( v w )  under G ( x  ~ n u ~) is a proper subset of 

F , ( v ) - { R ( v u ) } ,  then G(x  ~ n u ± ) R ~ / 1  since 

I G(x • n O(x • n = I 
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But a nontrivial element of G ( x ~ n  u~)R(ow) again implies the existence of a 

5-gon. So I G(x~ n u~)l divides I Fl(v ) - {R (vu)}l and the additional assumption 

that t = I G( x~N u~)l gives the desired regular action. 

(iii) Let H be the hexagon with vertices x, u, v, w, b, a. Clearly the hyperbolic 

line R (uw) is a subset of F2(v)n  F4(a). The claim is that the two sets are equal. 

For z E F2(v) n F4(a), it follows that z E R (uw) iff z I _~ u ~ n w ~. It suffices to 

show that z E i ~ for i ~ u ~ n w • in order to establish the claim. 

If d(v, i ) =  2, then by the triangle inequality d(z, i)<-4. Note that d(v, i ) ~  4. 
Otherwise the unique path joining v and i does not contain one of R (vu) and 

R (vw), say R (vw). Then 

d(i, w) = d(i, v)+ d(v, w) = 6, 

a contradiction. Now assume d(v, i )= 6. 
Let v , u , x , a , c , z  be the vertices of a hexagon H. By (ii) there is g l E  

G ( v ~ n w ~ ) with g ~( R ( ux ) ) = R ( uh ) and g2 E G ( v ± n u ~ ) with g2( R ( wb ) ) = 

R(w]). Put g = g2g,. Then g fixes u, v, w and z. If g(a) = i, then d(z, i) = 4 since 

d(z, a ) =  4, and so z E i ~. Now assume g ( a ) ~  i. Note that d ( g ( a ) , i ) =  6 since 

otherwise there exists a 4- or a 5-gon. Also d(v, g(a)) = 6 since d(v, a)  = 6. Note 

that g(H)  is a hexagon containing the edges R(vu) ,  R(uh) ,  R (vw)  and R(wj) .  

So 

d(R(uh) ,  R ( w j ) =  6 - - d ( g ( R ( u x ) ,  g(R(zc ) ) )=  d(g(R(wb)) ,  g(R(zc))) .  

In addition 

d(v, R (uh )) = 3 = d(v, R (wj)) = d(v, g (g  (zc )); 
d(g(a),  g ( u h ) ) =  3 = d(g(a),  R (wj ) )=  d(g(a),  g(g(zc)));  

d(i, R(uh  )) = 3 = d(i, R(wj)) .  

Finally the claim is that d( i , g (R( zc ) )=  3 and so d(i, z ) =  4, as desired. 

Indeed there is g 3 E G ( u l n h  ±) with g 3 ( R ( v w ) ) = R ( v z ) b y  (ii). Since 

g3(g(a))= g(a), it follows that g(R(wj ) )=  R(zg(c)) .  Thus 

d(i, R (zg(c ))) = d(g3(i), g3(R (w])) = d(i, R (w/ )) = 3. 

(iv) G ( x ~ N  u ~) acts semiregularly on F2(v)O F4(a ) -{u}  by (i) and this set 

equals R ( u w ) -  {u } by (iii). By computation of orders, there is regular action. 

LEMMA 4.5. Assume G <- Aut Y( has rank 4 on points. Assume that s = t = 

I G(x ~ n u±)l where d(x, u) = 2. Then Y( is isomorphic to the usual hexagon for 
G2(s) and G ~G2(s) .  
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PROOF. By Theorem 1.1, Y( is isomorphic to the usual hexagon associated 

with G2(s) because by hypothesis s = t and by Lemma 4.4 (iv) t = h. Under this 

isomorphism the set x • for x E ~ corresponds to the set of singular points of the 

orthogonal geometry of dimension 7. Furthermore the elements of G ( x I M  u +) 

correspond to Siegal transformations of root type 1. (See [6] for the definition 

and properties of these transformations.) The pair consisting of the point set 

{x} t..J F2(x) and of the lines in this set corresponds to a projective plane of order 

s, which is a singular subspace of the orthogonal geometry by Lemma 2.5. Thus 

G contains elements which correspond to all the Siegal transformations that are 

in G2(s). Since these transformations generate G:(s), 

( G ( x  I M u i ) : x , u E ~  with d ( x , u ) = 2 >  ~ G 2 ( s ) ,  

as desired. Note that a theorem of Stark [6] also implies the desired result. 

LEMMA 4.6. If g E Aut Y( fixes all points on a line L, all lines through a point 

x E L and also fixes some line K with d(L, K)  = 6, then g = 1. 

PROOF. This is a result due to J. Tits. For a proof see Lemma 1 of Faulkner 

[2]. 

5. The proof of Theorem 1.2 

Let ~ be a generalized hexagon of order (p, p) where p is a prime. Suppose 

G = Aut ~ has rank 4 on the vertices of ~.  If p = 2, then ~ is isomorphic to the 

usual hexagon for G2(2) by Theorem 11.5 of Tits [7]. Assume p > 2. Let P be a 

Sylow p-subgroup of G. Then I P ] ~ pS since Gx is transitive on F6(x), which has 

order p~. The group P fixes some point x because the number of points of ~ is 

(1 + p)(1 + p2+ p~). Also P fixes some singular line L on x since the number of 

singular lines on x is 1 + p. Let L = R(xu) .  Choose points v, w, b and a of ~ so 

that x, u, v, w, b, a are the vertices of a hexagon of ~,  which is denoted H. Let 

N = R ( x a )  and M = R(uv) .  
The goad of the proof is to show that P(x* N u ± ) / 1  for vertices x, u with 

d(x, u) = 2. If P ( x ' M  u ' ) / 1 ,  then by Lemma 4.4 (ii) and (iii), ]P (x lM u*)[ = 

h = p  and by Lemma 4.5, G ~  G2(p) and 3f is the hexagon for G2(p). 

LEMMA 5.1. If g is a p-element of G which fixes each vertex of a hexagon of ~,  

then g = 1. 

PROOF. Suppose g fixes the hexagon with vertices v,,v2, " ,v~.  Then g E 

G(F~(R(v,v2))MG(F,(v.)) .  Furthermore g fixes R(v4v~) with d(R(v~v2), 

R(v~vs)) = 6. By Lemma 4.6 it follows that g = 1. 
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LEMMA 5.2. The group P is transitive on L - {x }, on F6(x), on F2(x) -  L and 

has two orbits on F4(x), one of length p~ and one of length p4. Furthermore 

]Pa:Pau[=pand [P[=pS orp6. 

PROOF. (i) P is transitive on L - {x }. For I GL~ : G,,  I = P since GL is doubly 

transitive on the points of L by Lemma 4.1. Then 

IGL~:Pu[=p.IG,°:P~I=IG,,x:PI.IP:P,f, 

where I GL~ : P [ is a p ' -number  because P is Sylow in GxL. Thus p = [ P: P, I. 

(ii) P is transitive on F6(x). The proof is similar to (i) and omitted.  

(iii) P is transitive on F2(x ) -  L, a set of order p2. Indeed I G~: Gx, I = (p + 1)p 

because G~ is transitive on F2(x). Then 

l a x :  Po I = (p + l )p  "tGx,:P,  I = [ G ~ : P I ' I P : P , [ .  

So p divides I P: Po I- Suppose p = I P: P~ I- Note that 

If 'o: P ~  I<_ - I r , ( a )  n r~(~)l = p". 

It follows that I L :  e.~ I = p" and that P~ = P~o because I P: Pw I = P-~ by (ii). So 

P~ fixes a A w = b, L N w ~ =  u, u A w = V and each vertex of the hexagon H. 

Thus P~ = 1 by Lemma 5.1, and by (ii) 1P[ = p~. Now no non-trivial p-e lement  

can fix 2 points at maximal distance. 

But I P: Po [= p and I P, b J_-> p2 because 

leo: Po~ I -~ I r~ (a )  n r~(x)f  = p~. 

Since P,~ fixes L setwise, [Pobu I -  -> p where d(b, u ) =  6, a contradiction. So 

l P:  Pof= p~ and (iii) holds. 
(iv) I P: P~I = p3. Indeed I G,:  Gxol = (p + 1)p 3 since G, is transitive on F4(x). 

Then 

l a~: eol=(p + l)p3.l G~o: eol= lG~: el . l  e: Pol, 

where [v~l is a p-power less than or equal to IF , (x )NF3(L) I=p" .  Thus 

p ' = I P : P o l .  

(v) I P: Pb I = p~. Indeed 

I G ~ : P b l = ( p + l ) p ~ ' l G ~ b : P b l = l G ~ : P l ' l e : P b l ,  

where [bPl is a p-power less than or equal to IF , (x)N Fs(L) I = p4. If I P: Pbl = 

pB, then I Pb[-- > p2 and I Ph, I_-- > p where d(b, u) = 6. So P ~ / 1  for P~ = 1 implies 

that no non-trivial p-e lement  fixes 2 points at maximal distance. Thus ] P ] _-> p~, 

IPb, I_>--p 2 and t Pb,,(,~)l => p. Now Pb°R(~, fixes R ( u v ) n  b ~ = v, then v ^ b = w 
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and each vertex of the hexagon H. By Lemma 5.1, Pb.R(,o)= 1, a contradiction. 

Thus I P: Pb [= p4. 

(vi) Note that I Po : Po, I = P. Otherwise P, = Po. _-< P, ~ P and so P, fixes a". 

Consequently P, = P(F2(x)), which contradicts (iii). S o [ P  o: P,, I = p  and then 

fPo:Po.l=p ~. 
(vii) By (ii) I P: P~ I = pS. If P~ = P~,Rtwb), then P~ fixes x ~ A R (wb) = b, then 

fixes b ^ x -- a, so fixes each vertex of H and by Lemma 5.1 is trivial. So I P~ I -- 1 

or p. 

LEMMA 5.3. If Z(P)  denotes the center of P, then Z(P)NP(F~(x))N 

P(F,(L)) ~ 1. 

PROOF. Note first that P(r,(x))= P~ and P(F , (L) )=  P,. Now I P: PNI=p 
because G~ is 2-transitive on the lines through x by Lemma 4.3. So ] PN I => p4 

since I P I --> P~. Similarly I P~ [ => P'. If P~ = P,, then P~b ~ 1 because ] ion : Pob I = 

p3by Lemma5.2. So P ~  1 a n d [ P  I = p6. But lPN,(o~)I => p: since [ P, : P,.,(o~)I = 

p3. Hence [ PNw I => P and PNw fixes N N w ~ = a, then a ^ w = b, so fixes each 

vertex of the hexagon H. By Lemma 5.1, PN~ = 1, a contradiction. Therefore 

PN~ P, and P = PUP,. Since I Pu, [=> p3 and PN, is normal in P as PN. is the 

intersection of two normal subgroups of P, it follows that Z(P)  N PN, ~ 1. 

LEMMA 5.4 (i) If Pw ~ 1, then P~ is regular on the set of singular lines through 

w, unequal to R(wv). 

(ii) If Pw = 1, then P is transitive on F6(L). 

PROOF. (i) From (vii) of the proof of Lemma 5.2, PwR(wb)= 1. Since [Pw I = P, 
the result follows. 

(ii) If Pw = 1, then I P I = pS. If K E F6(L), then there are p + 1 paths of length 

6 from L to K. Let y denote the path which goes through u E L. Let v and w 

denote the points of y with d(L, v) = 3 and d(L, w) = 5, respectively. By Lemma 

5.2, IP:P~[=p3. So [Pv:PRt~w)l=p. For if P~=PRtv~), then IPwl>-_p. Thus 

[P: PR(vw)[ = p4. Since P.(ow),K ----< Pw = 1, it follows that [ P.(vw): P.(~w),~[ = p and 

that [P: PR(w),KI = pS__ [ I '6(L)].  

LEMMA 5.5. The group G has rank 4 on the singular lines of ~. 

PROOF. The group G is transitive on the singular lines of ~(. Indeed if R (ab) 

and R(cd) are singular, then there is g E G with g(a) = c. Since g(b), d E F2(c), 

an orbit of Go, there is h ~ G~ with h(g(b))= d. So hg(R(ab))= R(cd). 

Now fix a singular line L. If M, and M2 are singular lines of F2(L), then for 

u~EM, with d ( u , L ) = 3 ,  there is g E G L  with g(u~)=u: because G~ is 
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transitive on the points of F3(L) by Lemma 4.2. Since Y( is a generalized 

hexagon, the unique path from L to u of length 3 must be sent by g • Gj. to the 

unique path of length 3 from L to u2. It follows that g(M~) = M2 and that F2(L) is 

an orbit of GL. 

Since G~. is transitive on Fs(L) by Lemma 4.2, it follows that GL is transitive 

on F4(L). 

Let M~, M2 E F~(L). There are 1 + p paths of length 6 from L to M~. Fix paths 

Y~ of length 6 from L to M~ which pass through u E L .  If w~Ey~ with 

d ( L , w ~ ) = 5 ,  then there is g ~ G ~  with g ( w ~ ) = w 2  and g ( y ' ~ ) = y * ,  where Y* 

denotes the subpath of 7~ from L to w,. If g(M~)= M2, we are done. Assume 

now that g ( M ~ ) ~  M2. If P ~ / 1 ,  then by Lemma 5.4 (i), there is h E P,  with 

h(g (M~) )=  M2. If Pw = 1, then by Lemma 5.4 (ii), P is transitive on F6(L). In 

either case, F6(L) is an orbit of G~. Therefore G has rank 4 on the lines of ~,  as 

desired. 

LEMMA 5.6. Let Pv = P(F2(u)). Let i,j, k be points of ~ with d ( i, k )  = 4 and 

i ^ k = j. Let S by a Sylow p-subgroup of Gj.R(jk). Then S~k = S ( F 2 ( ] ' ) ) .  

PROOV. First we show that Puo = P(F2(x)). Since G is rank 4 on points, G is 

transitive on ordered pairs of hyperbolic points at distance 4. There is g E G 

with g ( x ) =  a and g (v )  = u. Note that 

x = a ^ u = g ( x ) ^  g(v)  = g(x  ^ v) = g ( u ) .  

Since Po = P(F2(u)), it follows that (Pu)" = P" 7) G(F2(x)), a subgroup which 

fixes x and L. By Sylow's Theorem, there is h E G~L with (Pg)h = p. By Lemma 

5.2, there is k, E Ph(.) with k~(h(a))  = a because 

]P.:  P.. ] = ] P h(.,: Pn,~).h(.,] = p2. 

Also by Lemma 5.2, there is k2E P, with k2(h(u))  = u since ]Po: P,, [= p. Now 

let l = k2k~hg. Then 

P'~ = P A G (F2(x)) = P'~v = P, , ,  

as desired. By a similar argument, it follows that 

S,~ = S (V:0)). 

LEMMA 5.7. Let Pb = P(F2(a )). Then either S,k = S(F2(j))or S,kR(kk') = S(F2(j)) 

where d(k ,  k ' )  = 2 and d ( k , j ) =  4. 

PROOF. Note Pb = P~b N P~(~,)= P(F : (a ) )N P~(~.). By Lemma 5.6, P[  = 

P., n P~(,, ,)= P(F2(x))C3 PR(,,,~ where d ( u , u ' ) =  2 and d ( x , u ' ) = 4 .  Since 
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]P.. :  P..R(.v~] = p, there is k3@ P.~ with k3(R(uu')) = R(uv )  and so P..R(..) = 

P(F2(x))R(,,,o. Since P,.,, >= P(F2(x)) and I P-. : P.~(,,.)I = P, it follows that either 

P,,. = P(F2(x)) or P. . , . , , . )= P(F2(x)). Note that in the latter case, P(F2(x)) fixes 

R (uv) ~ and so fixes F:(L) elementwise. Thus P(F~(x )) _-< P(F2(L)). The desired 

result follows by a similar argument. 

LEMMA 5.8. Either P(F: (x ) )=P. .  or P(F2(x))=P..R~o). In particular 

e(r,_(x))/ I. 

PROOV. If Z denotes Z ( P )  n P ( F , ( x ) ) n  P(F,(L)),  then Z / 1  by Lemma 5.3. 

Assume first that Z > Zo. Then Z is transitive on R(xa )  - {x}. The group P~(,~ 

lies in P ( F , (x ) ) n  P(I'~(a)) and is normalized by Z So PRt~  =< P(F,(a ' ) )  for all 

a ' E  R(xa )  and P~(.,b~ = P(F2(R(xa))) in )~. Now G is rank 4 on the lines of ~.  

By the dual of Lemma 5.6, P(F2(L)) = Pr~(,~,).R(~)since R (uv )  ^ R (xa )  = L. The 

result follows. 

Now assume that Z = Zo#  1. If in addition Za lies in P (F , (a ) )N P(F~(u)), 

then Z,, fixes R(ab)" and R(uv )  p and so fixes each element of F~(x)= 

R(xa)~N R(xu)  ~. Therefore Zo = P ( F 3 ( x ) ) / 1 .  Now apply Lemma 4.5 to )~*, 

the dual of W. Assume next that Zo ~ P(F, (a) )  N P(F,(u)).  If Zo ;~ P(F,(u)),  then 

P~ fixes R(uv)  z pointwise and so Po = P(F:(u)).  By Lemma 5.6 P~ = P(F2(x)). 

If Z,, _-< P(F,(u)),  then Z , Z  P(F,(a)).  The group Pb fixes R(ab)  ~ pointwise and 

so Pb = P(Fz(a)). By Lemma 5.7, either P,, = P(F:(x)) or P~,M = P(F2(x)). 

LEMMA 5.9. / f  P ~ /  1, then P(x • N u ~ ) /  1. 

PROOt_ Let X = Z ( P ) n  P(F2(x)). By Lemma 5.8, it follows that X / 1 .  If 

X~, ¢ 1, then X~ fixes v p pointwise since Xo is a central subgroup. By Lemma 5.2, 

it follows that X~ fixes U {Fz(y) U {y }: y C L } -- x ~ N u i pointwise. Thus X~ = 

P(x I n ui)  and now apply Lemma 4.5 to ~(. 

Assume now that X~ = 1. If XR(u~,~/1, then Xmuv) fixes R(uv )  e pointwise and 

s o  X.,.o,<=P(F~(L)). Let z = z ( P ) n e ( r 2 ( x ) ) n P ( r 2 ( L ) ) .  Then Z =  

X ~ . , , ) / 1 .  If Z /  1, then Zb fixes b ~ n R(uv)  = {v}; but X~ = 1, a contradiction. 

If Z~(.b~/ 1, then ZR~.b~ fixes R(ab)L Since I P: P~ I = P '  by Lemma 5.2, Z~(.b~ 

fixes elementwise 

{x I u r~(x) = R (xu)~ n R (xa)~. 

Because G is rank 4 on singular lines by Lemma 5.5, apply Lemma 4.5 to ~ * ,  

the dual of ~.  

Assume now that ZR~,b)= 1. Then Z is regular on the set of singular lines, 

unequal to R(xa) ,  through a. Since Ph fixes R(ab)  pointwise, Pb fixes 
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R (ab)z U R (ax) = F2(a ) 

pointwise and P, = P(F2(a)). It follows by Lemma 5.7 that either P(F:(x))  = P,, 

or that P(F:(x)) = Pu,Rtu~. So Pw = P.wR~,~ fixes Fffv) pointwise. Indeed pick S 

to be a Sylow p-subgroup of G vR(~,~ with S -> P~. By Lemma 5.6, S,~R(,~ fixes 

Fffv) pointwise and S . ~ , ~  => P~. Because Z = X~,~  is regular on R ( u v ) - { u  }, 

it follows that P~ fixes F2(v) z pointwise. Since Pw _-< PR~v~ = P~R~o~ and P ~ , ~  

fixes Fz(u) pointwise, Pw fixes elementwise 

O{G(v') :  v '~  R(uv)}= u~('l v ~. 

If P ~ / 1 ,  then apply Lemma 4.5 to N. 

Finally assume X ~ ( ~ =  1. Then X is regular on the set of singular lines 

through u, unequal to R(ux). So P~ fixes R(uv) × pointwise and fixes Fffu) 

pointwise. If v ' ~ F f f u ) - { R ( u v ) U L } ,  then there is g (EX with g(R(uv))= 
R(uv')  where d(g(v ) ,w)= 6. By Lemma 5.6, P~ fixes F:(v) pointwise. So 

P~ = P~ fixes F2(g(v)) pointwise. Now choose points y and z so that g(v), u, v, 
w, y and z are the vertices of a hexagon of )~. Since z E F2(g(v)), it follows that 

P~ fixes z, so z ^ w = y and P~ fixes each vertex of the hexagon. By Lemma 5.1, 

P~ = 1. This completes the proof of the lemma. 

Now assume that P~ = 1. So ] P] = p5 and no non-trivial p-element can fix 2 

points at maximal distance. Since G has rank 4 on lines, PK = 1 for K E F~(L) 

and no non-trivial p-element can fix 2 singular lines at maximal distance. 

By Lemma 5.2, I P: P~ I = P and [P: P, I = p2. Now I P:P,o I = p3 and [ P~o ] = 

p2. For if P,~ = P~, then since [ Po : Pob I = P:, the group P,~ is nontrivial and fixes 

b, u with d(b, u) = 6, a contradiction. By the principle of duality, [PMN I = p2. We 

will derive a contradiction by studying the subgroups of P,~ and PMN- The 

argument is similar to Kantor's [4]. 

LEMMA 5.10. P,, = P(F2(x)) and PMN = P(G(L)). 

PROOF. By Lemma 5.8, either P,o = P(Fffx)) or P.o~ = P(G(x)) .  Suppose 

P(Fffx))  = P,,M of order p. Let S be a Sylow p-subgroup of G~N with S -> P,o~. 

By Lemma 5.7, S(Ff fx) )=  S,,Rtab~. Now 

S(V2(x)) = S n a(r2(x))_-> P,o~ = P(G(x) ) .  

By orders, S(Ff fx) )=  P(Fdx)) .  But S(Fffx))fixes R(ab)while P(Fffx))f ixes M 

with d(R(ab) ) ,M)= 6, a contradiction. Hence P,, = P(Fffx)). Dually, P•N = 

P(r~(L)). 
By Lemma 5.2, [ P., : P,°M [ = p and so P,~M = P ~o  has order p. Furthermore 
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PMN° = PMN (3 P,, ~ P and so Z = Z(P)  N PMN,, # 1 and Z = PMN,. It follows that 

P,,PMN = P.N, a group of order p3. 

LEMMA 5.11. PMN has a set of p + 1 distinct subgroups of order p, namely 

{PMN(G(y)): y E L}. 

PROOF. If y E L and z E F 2 ( y ) - L ,  then PMN fixes R ( y z )  setwise since 

R (yz) @ F2(L) and so I PMN : P,N~ ] = 1 or p. If PMN = PMNz, then PMN, fixes a and 

z with d(a ,z )= 6, 'a  contradiction. So PMN~ has order p, fixes R ( y z ) - { y , z }  

setwise and so fixes F2(y) pointwise. Indeed 

P . ~  = e . ~  n P~z = p . N  n P(Fffy)) 

by Lemma 5.6. If y ' E  L - { y }  and z ' E F 2 ( y ' ) - L ' ,  then PMN~¢ PMN~' because 

d(z, z ' ) =  6. This completes the proof of the lemma. 

Now PMN = P(F2(L)) is a Sylow p-subgroup of G(F2(L)U{L}). By Lemma 

4.1, G~ is doubly transitive on the points of L. Hence by the Frattini argument, 

N(PMN)L is doubly transitive on the set of p + 1 subgroups and induces at least 

SL(2, p) on PMN, because 

GL = N(PM~), • G(G(L)U{L}) .  

LEMMA 5.12. P.a has a set of p + 1 distinct subgroups of order p, namely 

{P..(F2(R)): R is a line on x}. 

The proof is the dual of the previous proof and is omitted. 

By Lemma 4.3, Gx is doubly transitive on the singular lines through x. The 

group P~, = P(F2(x)) is a Sylow p-subgroup of G(F2(x)U {x}). By the Frattini 

argument, N(P,a)x is doubly transitive on the set of p + 1 subgroups of P,o and 

induces at least SL(2, p) on P,o. 

In view of the action of N(P.,)x on P,,, there is a 2-element t @ N(P,,)x n 
N(PMN) which inverts P,~ and centralizes PMN/Z. Then t normalizes each of the 

p + 1 subgroups of P.o corresponding to the lines on x and so t ~  G(G(x) ) .  

Similarly there is a 2-element t ' ~  t with t '~  N(PMN)L A N(P.o) which inverts 

PMN and centralizes P,o/Z. Then t ' E  G(FI(L)).  We assume that (t, t') _-< N(P,N) 

is a 2-group. 

Now tt' centralizes Z and inverts P,N/Z. Hence tt 'E G(FI(x))  fq G(F~(L)). 

For y E L -{x} ,  the element tt' fixes F~(y) and so fixes one of the p lines ~ L on 

y, say L1. Since tt' fixes L , - { y } ,  it fixes one of the p points of L , - { y } .  Now 

Z=PM~a<--_P(G(y)) and is transitive on L~-{y},  lest Z fix a and i with 

d(a, i) = 6. Since tt' centralizes Z, it follows that tt'@ G(F,(L,)).  Similarly for 
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U E L - { x , y } ,  the e l e m e n t  t t ' E  G(F~(L2)) for  some  L 2 #  L on u, Let  i E L l -  

{y} and ] E L 2 - { u } .  Since tt '  fixes F , ( j ) ,  it fixes one  of the  p lines ¢ L, on j, say 

K. Because  dO, i) = 6, it fol lows that  d ( K ,  i) = 5. Let  K, m~, K, ,  m2, K2, i be the  

un ique  pa th  of ~ jo in ing  K to i. Then  tt '  must fix this path .  O the rwi se  the  

ver t ices  i, m2, ml ,  t t ' (ml ) ,  t t ' (m2) form e i the r  a qua d ra ng l e  or  a p e n t a g o n  of Y( 

since tt '  fixes the  line K and the ver tex  i, a con t rad ic t ion .  Thus  tt ' fixes the  

ver t ices  of  the  hexagon  y, u, j, m~, m2, i. In pa r t i cu la r  t t '  fixes L = R ( u y )  and  

K,  = R ( m , m 2 )  with d ( L ,  K . ) =  6. Since tt ' fixes all poin ts  of L and all l ines on 

x E L, it now follows by L e m m a  4.6 that  tt '  -- 1. This  con t rad ic t ion  comple t e s  the  

p roof  of T h e o r e m  1.2. 
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