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GENERALIZED HEXAGONS OF ORDER (1)

BY
ARTHUR YANUSHKA

ABSTRACT

A generalized hexagon of order (¢, t) in which certain subsets are maximal may
be characterized as the generalized hexagon associated with Dickson’s group
G,(t). From this geometric result, it follows that if G is a group of automorph-
isms of a generalized hexagon of order (p, p) for a prime p and if G has rank 4
on points, then G = Gp).

1. Introduction

A finite generalized hexagon of order (s,t) [3] is an incidence structure
S = (P, B, I), with an incidence relation satisfying the following axioms:

(i) each element of %, which is called a point, is incident with 1+ ¢ elements
of &, which are called edges, for ¢ = 1 and each edge is incident with 1 + s points
for s =1,

(i) |P|=(+s)(A+st+s*)and |B|=(1+1)(1+st+57),

(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k
points and k edges.

The distance of two elements a, b € ? U B is denoted by d(a, b) or d(b, a).
For x € @, let x* ={y € ?:d(x, y) = 4} and for distinct points x, y let R(xy)=
N{z*:z2€ P and x,y € z*}.

We note that the only known examples of finite generalized hexagons are
those associated with Dickson’s group G»(q), which have order (g, q) where g is
a prime power, and those associated with the triality group *D.(q), which have
order (q°, q). We will study the case where s =t.

THEOREM 1.1. Let # be a generalized hexagon of order (t,t). Suppose
[R(xy)| =1+t for all pairs (x,y) with d(x,y)=4. Then ¥ is isomorphic to the
usual hexagon associated with Gy(t).
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An important tool used for this geometric characterization is a theorem of
Buekenhout and Shult [1] on pre-polar spaces. Indeed the incidence structure
(P, %, €) where £ =B U{R(xy):x,y, € P d(x,y)=4} forms a pre-polar
space. It follows that 2 together with its subspaces is the orthogonal geometry of
dimension 7 over GF(¢) and that ¢ is a prime power. That 3 is the generalized
hexagon associated with Gx(t) is a consequence of work of Schellekens [5].

Next we study the case where s = 1 is prime and Aut & has rank 4 on points.

THEOREM 1.2. Let ¥ be a generalized hexagon of order (p, p) for a prime p.
Suppose G, a subgroup of Aut, has rank 4 on points. Then G contains as a
normal subgroup a group isomorphic to G,(p) and ¥ is isomorphic to the usual
hexagon associated with G,(p).

A group G having a BN-pair whose Weyl! group is D), naturally acts as an
automorphism group of a generalized hexagon of order (s, ¢t) with s >1 and
t > 1. Thus as an immediate consequence of Theorem 1.2 we have:

CoroLLARY 1.3. Let G be a finite group having BN-pair and Weyl group D,..
Suppose that |P:B| —1 is a prime p for each maximal parabolic subgroup P.
Then G has a normal subgroup H isomorphic to G,(p), with the usual BN-pair
induced on H.

The basic idea for the proof is to investigate the subgroup structure of a Sylow
p-subgroup P of G, in particular to determine the structure of the stabilizers in P
of various sets of %. The method of attack is similar to recent work of Kantor [4]
on generalized quadrangles with a prime parameter. Kantor’s main result is that
if Q is a generalized quadrangle of order (p, t) with p prime and if G = Aut Q
has rank 3 on points, then with some possible exceptions, G =PSp(4,p) or
PSU (4, p) and Q is one of the usual quadrangles associated with these groups.
So Theorem 1.2 is a version of Kantor’s theorem for generalized hexagons with
equal prime parameters. We note that in order to consider the problem of a
generalized hexagon with parameters (s, p) for a prime p, a geometric character-
ization of hexagons of type (1%, 1) is needed.

Finally the author wishes to thank William Kantor for suggesting the problem
to him and for his helpful comments.

2. Lines of a generalized hexagon

Let ¥ be a generalized hexagon of order (s, ¢) for s, ¢ > 1. If z is a point or an
edge of ¥, define for i =1,2,---,6 the sets I':(z) by
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Fi(z)={ye ¥:d(y,z)=i}.
For a point x of ¥, define the block containing x, denoted x*, by
x'={x}Ul(x)VU(x).

For two distinct points x,y of %, define the line through x and y, denoted
R(xy), as follows:

R(xy)= N{z':z isapointof F with x,y € z'}.

Note that x,y€z* iff z€Ex*Ny"* and that u € R(xy) iff u' Dx " Ny'.

Call the line R (xy) singular, hyperbolic or imaginary according as d(x,y) =2,
4 or 6 respectively.

If d(x,y) =4, then let x A y denote the unique point of # with d(x,x A y)=
2=d(x ry,y).

Lemma 2.1. If d(x,y)=2 and L is the edge of ¥ joining x and y, then
R(xy)=T\(L).

Proor, Let u €L and let x,y €Ez*. If z€{(x)U{x}, then d{z,u)=
d(z,x)+d(x,u)=4 and u € z*. Similarly if z €l(y)U{y}, then u€z".
Assume now that z ETy(x)NTu(y). Then z A x = z A y; otherwise # contains
the pentagon with vertices x,x A z, z, y A z, y. In fact z A x € L; otherwise ¥
contains the triangle with vertices x,x Az, y. Since u € L, it follows that
d(u,z Ax)=2, that u € z* and that I'(L)C R(xy).

Conversely if u € R(xy), then u* D x*Ny*. Suppose that u € I'(x). Then
xAu€L lest d(u,y)=6. If weTl(x)NTy(x Au), then d(w,u)=6 but
wEx*Ny"Cu",acontradiction. So u € I';(x) U {x}. Similarly u € I';y(y) U {y}.
It follows that u € L; otherwise x, u, y are the vertices of a triangle of #. Thus
R(xy)CT'W(L).

Note that singular lines correspond to edges of # and that if d(xy) =2, then
Rxy)=(T(x)NTy)) U{x, y}.

Assume the number of points of a hyperbolic line is constant.

Lemma 2.2. Let d(x,y)=4. Then

(i) R(xy)CTxx Ay)NTyw) for any w ET(x)NTy(y)NTe(x Ay). In fact
the hyperbolic line R(xy) consists of at most one point from each singular line
through x n'y. Thus |R(xy)|=t+1.

(it) Let h+1=|R(xy)|. Then h =t and h divides st.

Proor. (i) Let u € R(xy) and let z=xnAy. Then z€x* Ny " Cu’. If
u €T, (z), then u A z lies on an edge L through z. Since d(x,y)=4, WLOG
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assume x& L. Then d(unrz,x)=4 and d(u,x)=6, a contradiction. So
u€rly(z) and R(xy)CTx(2).

If wel(x)NTyy)NTsz), then clearly R(xy)Cw". If v €& R(xy)
N {wlUTy(w)), then WLOG assume v # x. Since R{(xy)C ['(z), it follows that
d(z,v)=2 and d(z, w)=4, a contradiction of the choice of w. So R(xy)C
Tu(w).

Now I',(z) N Tu(w) consists of exactly one point # z from each singular line
through z. Indeed, if L is a singular line on z, then d(L,w)=35 because
d(z, w)=6. There is a unique point b € L —{z} with d(b, w) =4 since ¥ is a
generalized hexagon. So [Ty(z)NT«(w)|=t+1and h =t

(i) (z)NT«(x) is a union of hyperbolic lines on x with x removed and has
order st. Indeed I';(z) N F4(x) is the set of ¢ singular lines on z, distinct from the
singular line R (xz)and so has order ts. If w € ['(z) N ['s(x), then R(xw)—{x}C
I':(z) NT4(x). To see this, note that by (i) R(xw)CI'x(z). If u € R(xw)—{x},
then u €Ty(x). Otherwise if u €y(x), then u € R(xz)—{x, z}, which con-
tradicts (1). But T(x)NTx(z)= O if d(x,z)=2. So u € 'y(x).

Now express I'x(z)NT{x) as a disjoint union of sets R(xW)— {x} for
w € I'y(z) N Ty(x) to see that h divides st. This is possible due to the following
Lemma 2.3.

Lemma 2.3. Ifd(x,y)=4 and if u € R(xy)—{x}, then R(xu)= R(xy).

Proor. If u € R(xy)—{x}, then x*Nu*2Jx*Ny* By Lemma 2.2 (i)
d(x,u)=4 and so |x*Nu*|=|x*Ny*|. So x*Nu*=x*Ny* and R(xu)=
R(xy).

From the last two lemmas, it follows that two points at distance 4 are on
exactly one hperbolic line and on no singular line and that two distinct
hyperbolic lines meet at most in one point. Clearly a similar statement holds for
singular lines.

LeEMMA 2.4. (i) If d(x,y) =2, then for P the set of points of ¥
P=U{z:z € R(xy)}.

(i) If d(x,y)=4, then |R(xy)|=s+2. Also P = U{z":2€ R(xy)} iff s =
t=h

Proor. (i) If a € P, then 8§ = d(a, R(xy))€{1,3,5} and there is a unique
z € R(xy) with d(a,z)=8—-1. Thus a € z™.

(i) Let R(xy)={ao, as, -, an}. Let A =Ul,a’. Now express A as a
pairwise disjoint union of sets as follows:
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h
A=a;U U (a NTas)).
i=1

Then |A|=(+(+1)s+s*(t+Di)+hst(st+s—1), since |aiNTean)|=
lai|=|aiNai|. Now

[P|—|A|=st(s’t—h(st+s—-1))=0,
which implies the desired results.

LemmAa 2.5. If s=1t=h, then {x}UT(x) together with the singular and
hyperbolic lines contained in this set is a projective plane of order 1.

Proor. {x}UT(x) has 1+ (1+ )t points, 1+ ¢ singular lines and ¢ hyper-
bolic lines. Indeed count the pairs (y, H) with y € H CI'x(x) for H a hyperbolic
line. From the proof of Lemma 2.2 (ii) each y lies on st/h =t hyperbolic lines.
Thus {x} UT,(x) contains 1+ 1+ ¢* lines, each of which contains 1+ ¢ points.
Furthermore any 2 points determine a unique line. Therefore {x}UT,(x) is a
projective plane with the property that if y, z € {x} U 'x(x), then d(y, z) =4 and
yeEZ"

Note that the previous lemma is needed only for the proof of Theorem 1.2.

3. The proof of Theorem 1.1

Assume ¥ is a generalized hexagon of order (¢, ). Assume the hyperbolic
lines of # carry ¢t + 1 points. Let ? be the set of points of #. Let £ be the set of
singular and hyperbolic lines formed from ?. We will show that (P, £) is a
non-degenerate pre-polar space. Since # is a generalized hexagon, clearly
(2, £) is non-degenerate.

Let p, L be a non-incident point-line pair. Since by Lemma 2.4,

P=U{z":1z€L},

thereis z € L with p € z*. If thereis 2’ € L —{z} with p € 2'*, then z, 2z’ E p*
and L = R(zz')C p* by Lemma 2.3. So p is incident either to one point or to all
points of L.

Since (2, &) is a finite incidence structure, (%, £) is a pre-polar space of finite
rank in which lines carry ¢+ 1 points and which has (¢°—1)/(t — 1) points. By
Theorem 4 of [1], ? together with its subspaces is a polar space of finite rank. If
% has rank 2, then 2 is a generalized quadrangle of order (¢, >+ t* + 1) because
lines of (P, ¥) carry t + 1 points, lines are maximal subspaces and each point lies
in 1+t singular and ¢*(t+1) hyperbolic lines. But a quadrangle of
order (t,t*+¢*+1t) contains (1+¢t)(1+t(t+ >+ ¢’)) points while [?|=
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(1+1)(1+ 17+ %), a contradiction. So 2 has rank = 3. By theorem 1 of [1], 2 is
a polar space associated with a classical geometry of symplectic, unitary or
orthogonal type. In particular ¢ is a prime power. Since | P |=(t*—1)/(t - 1), it
follows that & is either a symplectic geometry of dimension 6 or an orthogonal
geometry of dimension 7.

If t is even, then 2 is an orthogonal geometry of dimension 7 which is
isomorphic to a symplectic geometry of dimension 6. If ¢ is odd, then there are
two cases to consider. First assume that no imaginary line contains more than
two points. Then ? is an orthogonal geometry of dimension 7. Secondly assume
that some imaginary line contains more than 2 points. Then 2 is a symplectic
geometry and so every imaginary line contains more than 2 points. Now there is
a plane of the generalized hexagon % which contains a quadrangle whose
diagonal points are collinear. The proof of this statement is found as (13.5) in
Schellekens [5]. Thus the characteristic of the underlying field of the polar space
is two. This contradicts the assumption that ¢ is odd. Therefore ? is an
orthogonal geometry of dimension 7.

The final step of the proof is to identify the generalized hexagon %, which is
now embedded in the orthogonal geometry, with the generalized hexagon
associated with G»(t). For this we refer the reader to section 14 of Schellekens

[5]-

4. Rank 4 subgroups of Aut ¥

Let 3 be a generalized hexagon of order (s, f). Hs will denote the set of
elements of H = Aut J fixing the set S, where S is a set of points or lines of .
H(S) will denote the set of elements of H fixing each element of S.

LEmMa 4.1. Suppose G = Aut X has rank 4 on points. Then G is 2 transitive
on the points of L, a line of #.

Proor. This is an immediate consequence of the facts that G, is transitive on
I'y(x) and that s > 1.

LEmMA 4.2, Let G = Aut ¥ have rank 4 on the points of ¥.

(1) If d(x,u)=2, then G,, is transitive on ['(x)NTy(u).

(i) If L is the singular line through x and u, then G, is transitive on the points of
I's(L).

(iii) If d(x,u)=2 and if (s,t +1)=1, then G, is transitive on x* NTy(u)=
Fu(x) N Te(u).

(iv) If (s,t +1)=1, then G, is transitive on T's(L).
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Proor. (i) If v €Tu«(x)NT(u), then G, = G, since y = x A v. Since G is
rank 4 on points, | G.: G, | = |Tu(x)|=s*t(t + 1) and | G.: G,, | = s(t + 1). Thus
| Gey: Gy | = st = | Tu(x)NT(y)].

(ii) Let z €T5(L). Let y be the unique point of L with d(y,z)=2. Say y# x.
By part (i), | 2%~ | = st. Since G, is transitive on the points of L by Lemma 4.1,
|GL: G |=s+1. Since G, = G,, it follows that [z |= (s +1)st = |[5(L)|.

(iii) Note that | x* N Ts(u)| = s*t* For if z € x* NTs(u), then d(z, L) =5 and
x is the unique point of L with d(z,x)=4. Since G is rank 4 on points,
|G.: G..| = s’ =|T(u)| and | G.: G..| = s(t + 1) = |T(u)|. Then

|Gu: Gue | =5(t+ 1) | Gux: Guz | = 517+ | Gua G |

Since (s, t + 1) =1 by hypothesis, s*t* divides | G..: G..; |. But
z % C x* NTe(u),

a set of order s’t*. Thus s°t°=| Gux: Gux: |
(iv) The proof follows from (iii) just as (ii) follows from (i).

Lemma 4.3. Suppose G = Aut ¥ has rank 4 on points. Then G, is doubly
transitive on the lines through x.

Proor. If x and u are distinct points of a line L, then G,, contains G..,
which is transitive on the points of I's(u) N I'x(x) by Lemma 4.2 (i). This implies
the desired result.

LEMMA 4.4. Suppose G = Aut ¥ has rank 4 on points. Let d(x, u)=2. Then
(i) the pointwise stabilizer G(x* N u*) is semiregular off x* N u*.

If in addition |G(x* Nu*)| =1, then

(i) for w €Ty (u)NTs(x), the group G(x*Nu*) is regular on T'i(w)—
{R(u, unw)h

(iif) Hyperbolic lines carry t + 1 points.

(iv) The group G(x* Nu*) is regular on R(vw)—{v}.

Proor. (i) See (7.4) of [5].

(i) Let H be the hexagon with vertices x, u, v, w, b, a. A nontrivial element
g € G(x'Nu*) does not fix R(vw) setwise. Otherwise there is a 5-gon with
vertices w, g(w), g(b), a, b, which is impossible. So g moves R(vw) to another
singular line on v. If the orbit of R(vw) under G(x* N u*) is a proper subset of
I'(v)—{R(vu)}, then G(x* N u*)rew)# 1 since

|G(x*Nu'): G(x*" N uren| =] Rw)*= M2,
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But a nontrivial element of G(x* N u*)rw, again implies the existence of a
5-gon. So | G(x* N u™)| divides |T',(v) — {R (vu)}| and the additional assumption
that t = | G(x* N u*)| gives the desired regular action.

(iii) Let H be the hexagon with vertices x, u, v, w, b, a. Clearly the hyperbolic
line R (uw) is a subset of I',(v) N T'4(a). The claim is that the two sets are equal.
For z €T')(v) NTu(a), it follows that z € R (uw) iff z* D u* N w?. It suffices to
show that z € i* for i € u* N w* in order to establish the claim.

If d(v,i)= 2, then by the triangle inequality d(z, i) =4. Note that d(v, i) # 4.
Otherwise the unique path joining v and i does not contain one of R (vu) and
R(vw), say R(vw). Then

d(i,w)=d(i,v)+d(v,w)=06,

a contradiction. Now assume d(v,i)=6.

Let v, u,x,a,c,z be the vertices of a hexagon H. By (ii) there is g, €
G(v*Nw*) with g,(R(ux))=R(uh) and g€ G(v*Nu*) with g(R(wb))=
R(wj). Put g = g.g:. Then g fixes u, v, w and z. If g(a) =i, then d(z, i) = 4 since
d(z,a)=4, and so z € i*. Now assume g(a) # i. Note that d(g(a), i) = 6 since
otherwise there exists a 4- or a 5-gon. Also d(v, g(a)) = 6 since d(v, a) = 6. Note
that g(H) is a hexagon containing the edges R(vu), R(uh), R(vw) and R(wj).
So

d(R(uh), R(wj)=6= d(g(R(ux), g(R(zc))) = d(g(R(wb)), g(R(z¢))).
In addition

d(v, R(uh)) =3 =d(v, R(wj))= d(v, g(R(z¢));

d(g(a), R(uh))=3=d(g(a), R(wj))=d(g(a), g(R(z¢)));

d(i, R(uh))=3=d(i, R(w}))).
Finally the claim is that d(i, g(R(zc))=3 and so d(i,z) =4, as desired.

Indeed there is g€ G(u*Nh*) with g;(R(vw))= R(vz) by (ii). Since

g+(g(a)) = g(a), it follows that g(R(wj))= R(zg(c)). Thus

d(i, R(zg(c))) = d(gs(i), gs(R(wj)) = d(i, R(wj)) = 3.

(iv) G(x* N u*) acts semiregularly on I'(v) NTu(a)—{u} by (i) and this set
equals R (uw)— {u} by (iii). By computation of orders, there is regular action.

Lemma 4.5. Assume G = Aut ¥ has rank 4 on points. Assume that s =1 =
|G(x* N u*)| where d(x,u)=2. Then ¥ is isomorphic to the usual hexagon for
Gis) and G > Gs).
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Proor. By Theorem 1.1, 5 is isomorphic to the usual hexagon associated
with G.(s) because by hypothesis s =t and by Lemma 4.4 (iv) t = h. Under this
isomorphism the set x * for x € 2 corresponds to the set of singular points of the
orthogonal geometry of dimension 7. Furthermore the elements of G(x* N u")
correspond to Siegal transformations of root type 1. (See [6] for the definition
and properties of these transformations.) The pair consisting of the point set
{x} UT5(x) and of the lines in this set corresponds to a projective plane of order
s, which is a singular subspace of the orthogonal geometry by Lemma 2.5. Thus
G contains elements which correspond to all the Siegal transformations that are
in G.(s). Since these transformations generate Gafs),

(G(x"Nu*)yx,u€P with d(x,u)=2> = Gys),
as desired. Note that a theorem of Stark [6] also implies the desired resnlt.

Lemma 4.6. If g € Aut ¥ fixes all points on a line L, all lines through a point
x € L and also fixes some line K with d(L,K) =6, then g =1.

Prook. This is a result due to J. Tits. For a proof see Lemma 1 of Faulkner

2].

5. The proof of Theorem 1.2

Let # be a generalized hexagon of order (p, p) where p is a prime. Suppose
G = Aut 3 has rank 4 on the vertices of . If p = 2, then % is isomorphic to the
usual hexagon for G.(2) by Theorem 11.5 of Tits [7]. Assume p >2. Let P be a
Sylow p-subgroup of G. Then | P| = p®since G, is transitive on ['s(x), which has
order p°. The group P fixes some point x because the number of points of ¥ is
(1+p)(1+p*+p?). Also P fixes some singular line L on x since the number of
singular lines on x is 1+ p. Let L = R(xu). Choose points v, w, b and a of # so
that x, u, v, w, b, a are the vertices of a hexagon of #, which is denoted H. Let
N = R(xa) and M = R (uv).

The goal of the proof is to show that P(x* N u")# 1 for vertices x,u with
d(x,u)=2.1f P(x*Nu')# 1, then by Lemma 4.4 (ii) and (iii), | P(x* N u*)|=
h =p and by Lemma 4.5, G G(p) and # is the hexagon for G:(p).

LemMa S.1. Ifgisa p-element of G which fixes each vertex of a hexagon of ¥,
then g = 1.

ProOF. Suppose g fixes the hexagon with vertices vy, v;,- -+, vs. Then g €
G(I(R(v,v:))N G(T\(v,)). Furthermore g fixes R(vivs) with d(R(v,v,),
R (v.vs)) = 6. By Lemma 4.6 it follows that g = 1.
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LemMA 5.2.  The group P is transitive on L —{x}, on T'«(x), on I';(x)~ L and
has two orbits on T.(x), one of length p* and one of length p*. Furthermore
|P.:P.|=pand |P|=p° orp°

Prook. (i) P is transitive on L —{x}. For | G..: G..
transitive on the points of L by Lemma 4.1. Then

= p since G, is doubly

| GL.: P,

=p-|Gu:P.|=|Gu:P||P:P.],

where | G.,: P| is a p’-number because P is Sylow in G,.. Thus p =|P: P, ]|.
(ii) P is transitive on I'y(x). The proof is similar to (i) and omitted.
(iii) P is transitive on I:(x)— L, a set of order p*. Indeed | G,: G.. | = (p + 1)p
because G, is transitive on I';(x). Then

|G:P,|=(p+1D)p|Gu:P.|=|G::P|-|P:P.].
So p divides | P: P, |. Suppose p =|P: P.|. Note that
[P,:P..|=|Ta)NT(x)|=p".

It follows that | P,: P, | = p* and that P, = P,, because | P: P,,|= p° by (ii). So
P, fixesaaw=>b, LNw*=u usrw=vo and each vertex of the hexagon H.
Thus P, =1 by Lemma 5.1, and by (ii) | P| = p*. Now no non-trivial p-element
can fix 2 points at maximal distance.

But [P:P,|=p and | P.,| = p° because

|P.: Pa | =|To(a) N Lu(x)| = p.

Since P,, fixes L setwise, | P, |Z p where d(b,u)=6, a contradiction. So
| P: P,|=p® and (iii) holds.
(iv) | P: P,|=p°. Indeed | G.: G..| = (p + 1)p since G, is transitive on I'y(x).
Then
|G.: P,

=(p+1)p*|G.:P,|=|G.:P|:|P:P,|,

where [v”| is a p-power less than or equal to |T«(x)NT(L)|=p". Thus
p’=|P:P,].
(v) |P:Py|=p* Indeed

|G Pol=(p+1)p* | Guw: Py | = |G P|-| P Py |,

where | b? | is a p-power less than or equal to |Tu(x)NTs(L)|=p*. If |P: P, | =
p’, then | P,|= p® and | P, | = p where d(b,u)=6. So P, # 1 for P, =1 implies
that no non-trivial p-element fixes 2 points at maximal distance. Thus | P | = p°,
| Po. | Z p* and | Poug(un)| Z - NOW Phureu) fixes R(uv)Nb*=v, thenvab=w
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and each vertex of the hexagon H. By Lemma 5.1, Purue) = 1, a contradiction.
Thus | P: P, | = p*.

(vi) Note that | P,: P,, | = p. Otherwise P, = P,, = P, <1 P and so P, fixes a”.
Consequently P, = P(I';,(x)), which contradicts (iii). So | P,: P..|=p and then
P.:P.|=p"

(vii) By (ii) | P: P.|=p*. If P, = P, rs) then P, fixes x* N R(wb) = b, then
fixes b A x = a, so fixes each vertex of H and by Lemma 5.1 is trivial. So | P, | = 1

or p.

Lemma 5.3. If Z(P) denotes the center of P, then Z(P)NP(I'\(x))N
PI (L)) #1.

Proor. Note first that P((x))= Py and P(['(L))=P.. Now |P:Py|=p
because G, is 2-transitive on the lines through x by Lemma 4.3. So | Py = p*
since | P| = p°. Similarly | P, |= p*. If Px = P, then P,,# 1 because | Py: P,y | =
p'byLemma5.2.So P, # 1and | P|= p® But|Pxrew)
p’. Hence | Pn.|Z p and Py, fixes NN w*=a, then a A w = b, so fixes each

z p?since | P: Puren| =

vertex of the hexagon H. By Lemma 5.1, Py, =1, a contradiction. Therefore
Py# P, and P = PyP,. Since | Pn, | Z p® and Pw. is normal in P as Py, is the
intersection of two normal subgroups of P, it follows that Z(P) N Px, # 1.
Lemma 54 (i) If P.# 1, then P, is regular on the set of singular lines through
w, unequal to R(wv).
(i) If P, =1, then P is transitive on TI'«(L).

ProofF. (i) From (vii) of the proof of Lemma 5.2, P g5 = 1. Since | P, | = p,
the result follows.

(ii) If P, =1, then | P|= p°. If K €4(L), then there are p + 1 paths of length
6 from L to K. Let y denote the path which goes through u € L. Let v and w
denote the points of y with d(L, v) = 3 and d(L, w) = 5, respectively. By Lemma
52, |P:P,|=p>. So |P,: Prww)| = p. For if P, = Pgeuw, then |P,|Zp. Thus
| P: Prowy| = p°. Since Prew,x = P, =1, it follows that
that | P: Prew.x| = p° = [To(L)].

PR(vw): PR(uw).K' =p and

LEMMA 5.5. The group G has rank 4 on the singular lines of ¥.

Proor. The group G is transitive on the singular lines of . Indeed if R (ab)
and R (cd) are singular, then there is g € G with g(a) = c. Since g(b), d €T'x(c),
an orbit of G,, there is h € G. with h(g(b))=d. So hg(R(ab))= R(cd).

Now fix a singular line L. If M, and M, are singular lines of I';(L), then for
w, € M; with d(u,L)=3, there is g € G, with g(u,)= u, because G. is
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transitive on the points of I's(L) by Lemma 4.2. Since # is a generalized
hexagon, the unique path from L to u of length 3 must be sent by g € G, to the
unique path of length 3 from L to u.. It follows that g(M,)= M, and that I';(L ) is
an orbit of G;.

Since G, is transitive on ['s(L) by Lemma 4.2, it follows that G, is transitive
on I',(L).

Let M, M,ET(L). There are 1+ p paths of length 6 from L to M. Fix paths
v of length 6 from L to M, which pass through u € L. If w; €y, with
d(L,w;)=75, then there is g € G, with g(w,)=w, and g(y})= v}, where y%
denotes the subpath of v, from L to w,. If g(M,)= M,, we are done. Assume
now that g(M,)# M.. If P,# 1, then by Lemma 5.4 (i), there is h € P, with
h(g(M)))= M,. If P, =1, then by Lemma 5.4 (ii), P is transitive on I'(L). In
either case, I'¢(L) is an orbit of G,. Therefore G has rank 4 on the lines of #, as
desired.

Lemma 5.6. Let P, = P(I'x(u)). Let i, j, k be points of % with d(i,k)=4 and
ink=j LetS by a Sylow p-subgroup of G;rg. Then Sx = S(I:(})).

Proor. First we show that P,. = P(I';(x)). Since G is rank 4 on points, G is
transitive on ordered pairs of hyperbolic points at distance 4. There is g€ G
with g(x)=a and g(v)= u. Note that

x=anu=g(x)ngv)=gxrv)=g(u).

Since P, = P(I';,(u)), it follows that (P,)* = P* N G(I's(x)), a subgroup which
fixes x and L. By Sylow’s Theorem, there is h € G,, with (P#)* = P. By Lemma
5.2, there is k, € Py, with k,(h(a))= a because

lPu: P. | ZIPh(u): Ph(u),h(a)‘ =P2-

Also by Lemma 5.2, there is k, € P, with ky(h(u))= u since | P,: P,,| = p. Now
let | = k;k,hg. Then

P,=PNGIx)) = P= Pu,
as desired. By a similar argument, it follows that
S = S(I()).-

LEMMA 57 Let Pb = P(Fz(a)) Then either S,‘k = S(Fz(j))OrS,‘kR(kk') = S(Fz(]))
where d(k,k’)y=2 and d(k,j)=4.

PROOF. NOte Pp, = be ﬂ PR(xu)z P(Fz(a))n PR(xu)- By Lemma 56, PII, =
Pio N Prun=PTAx)) N Prewy where d(u,u’y=2 and d(x,u’)=4. Since
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| Pui: Puurwey| = p, there is ki€ P, with ky(R(uu’))= R(uv) and $0 P ..rqw) =
P(I'2(x )k oy Since P.. = P(I'x(x)) and | Puy: Pouwriwr] = p, it follows that either
P.. = P(I's(x)) or Pk = P(I'a(x)). Note that in the latter case, P(I'x(x)) fixes
R (uv)” and so fixes I';(L) elementwise. Thus P(I'y(x))= P(T,(L)). The desired
result follows by a similar argument.

Lemma 5.8. Either P(I':(x))=P.. or P(['Ax))= P.rw) In particular

Proor. If Z denotes Z(P)N P(I'y(x))N P(I'(L)), then Z# 1 by Lemma 5.3.
Assume first that Z > Z,. Then Z is transitive on R(xa)—{x}. The group P g,
lies in P(I';(x))N P(I';(a)) and is normalized by Z So P = P(I'i(a")) for all
a'€ R(xa) and Prs;, = P(I':(R(xa))) in #. Now G is rank 4 on the lines of .
By the dual of Lemma 5.6, P(I';(L)) = P r(uo)rea) Since R(uv) A R(xa)= L. The
result follows.

Now assume that Z = Z,# 1. If in addition Z, lies in P(T'\(a))N P(I",(u)),
then Z, fixes R(ab)” and R(uv)” and so fixes each element of I's(x)=
R(xa) N R(xu)*. Therefore Z, = P(T'y(x))# 1. Now apply Lemma 4.5 to ¥*,
the dual of 7. Assume next that Z, £ P(I'i(a)) N P(I'\(u)). If Z,Z P(T'(u)), then
P, fixes R (uv)® pointwise and so P, = P([',(u)). By Lemma 5.6 P., = P(T2(x)).
If Z, = P(I'(u)), then Z,Z P(['\(a)). The group P, fixes R(ab)? pointwise and
so P, = P(I':(a)). By Lemma 5.7, either P,, = P(I'2(x)) or P, = P([x(x)).

Lemma 5.9. If P.#1, then P(x" Nu*)# 1.

Proor. Let X =Z(P)N P(I'x(x)). By Lemma 5.8, it follows that X# 1. If
X, # 1, then X, fixes v° pointwise since X, is a central subgroup. By Lemma 5.2,
it follows that X, fixes U{[(y)U{y}: y € L}=x"Nu"* pointwise. Thus X, =
P(x'Nu') and now apply Lemma 4.5 to ¥.

Assume now that X, = 1. If X g, # 1, then X g, fixes R (uv)” pointwise and
0 Xiwn=PTAL)). Let Z=Z(P)NPIx))NPTAL)). Then Z=
X ey # 1 If Z, # 1, then Z, fixes b* N R(uv) = {v}; but X, = 1, a contradiction.
If Ziws # 1, then Zg s, fixes R(ab)”. Since | P: P,|=p* by Lemma 5.2, Z z ()
fixes elementwise

{x}UTs(x)=R(xu)Y N R(xa)".

Because G is rank 4 on singular lines by Lemma 5.5, apply Lemma 4.5 to #*,
the dual of #.

Assume now that Zz ., = 1. Then Z is regular on the set of singular lines,
unequal to R(xa), through a. Since P, fixes R(ab) pointwise, P, fixes
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R(ab)* UR(ax)=Txa)

pointwise and P, = P(I';(a)). It follows by Lemma 5.7 that either P(I's(x)) = P..
or that P(I'2(x)) = Puakawr SO Pu = Puwra) fixes I';(v) pointwise. Indeed pick S
to be a Sylow p-subgroup of G .,rq.) with $ = P,. By Lemma 5.6, S ..ru) fixes
I'2(v) pointwise and S g, = P.. Because Z = Xg (.. is regular on R (uv) —{u},
it follows that P, fixes I',(v)” pointwise. Since P, = Priwy = Poxrowy a0 P iz om)
fixes I';(u) pointwise, P, fixes elementwise

U{l(v):v'ERuvl=u"Nov".

If P.#1, then apply Lemma 4.5 to #.

Finally assume Xgrw.,=1. Then X is regular on the set of singular lines
through u, unequal to R(ux). So P, fixes R(uv)* pointwise and fixes ['»(u)
pointwise. If v’ €(u)—{R(uv)U L}, then there is g € X with g(R(uv))=
R(uv') where d(g(v),w)=6. By Lemma 5.6, P, fixes I'x(v) pointwise. So
P& = P, fixes I's(g(v)) pointwise. Now choose points y and z so that g(v), u, v,
w, y and z are the vertices of a hexagon of #. Since z € I',(g(v)), it follows that
P, fixes z,50 z A w =y and P, fixes each vertex of the hexagon. By Lemma 5.1,
P, = 1. This completes the proof of the lemma.

Now assume that P, = 1. So | P| = p’ and no non-trivial p-element can fix 2
points at maximal distance. Since G has rank 4 on lines, Px = 1 for K € I'¢((L)
and no non-trivial p-element can fix 2 singular lines at maximal distance.

By Lemma 5.2, |P: P,|=p and | P: P,| = p®>. Now |P:P..|=p’and | P.. | =
p’. Forif P,, = P,, then since | P,: P,, | = p°, the group P, is nontrivial and fixes
b, u with d(b, u) = 6, a contradiction. By the principle of duality, | Pu~ | = p*. We
will derive a contradiction by studying the subgroups of P., and Pun. The
argument is similar to Kantor’s [4].

LEmMmA 5.10. P., = P(I'x(x)) and Pun = P([5(L)).

Proor. By Lemma 5.8, either P., = P(I's(x)) or P = P(I'x(x)). Suppose
P(I'Ax)) = P..m of order p. Let S be a Sylow p-subgroup of G,v with § = P..u.
By Lemma 5.7, S(I'x(x)) = S .cr(). Now

S(Txx))= 8 N G(Tx(x)) Z Poans = P(Ts(x)).

By orders, S(I'x(x)) = P(I'x(x)). But S(I'x(x)) fixes R(ab) while P(I'x(x)) fixes M
with d(R(ab)), M)=6, a contradiction. Hence P., = P(I';(x)). Dually, Pun~ =
P(I'A(L)).

By Lemma 5.2, | Pu.: Puaw | = p and s0 P.av = Puna has order p. Furthermore
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Puna = Pun NP, AP andso Z = Z(P)N Puna # 1 and Z = Pyn.. It follows that
P..Pun = P.x, a group of order p’.

LemMma 5.11. Pyx has a set of p +1 distinct subgroups of order p, namely
{Pun(Ta(y)): y € L}

Proor. If yEL and z €lx(y)— L, then Pun fixes R(yz) setwise since
R(yz)ET(L)and so | Pun: Pun. | = 1 01 p. If Pun = Pun,, then Py, fixes a and
z with d(a, z) =6, a contradiction. So Pun. has order p, fixes R(yz)—{y, z}
setwise and so fixes I',(y) pointwise. Indeed

Pun: = Pun N P, =PMNmP(F2(y))

by Lemma 5.6. If y’€ L —{y} and z"€T,(y’)— L', then Pun, # Pun. because
d(z,z")= 6. This completes the proof of the lemma.

Now Pyn = P(I',(L)) is a Sylow p-subgroup of G(I':(LYU{L}). By Lemma
4.1, G, is doubly transitive on the points of L. Hence by the Frattini argument,
N(Pun). is doubly transitive on the set of p + 1 subgroups and induces at least
SL(2,p) on Pun, because

G = N(PMN)L . G(F;(L)U{L})

LemMa 5.12. P, has a set of p+ 1 distinct subgroups of order p, namely
{P..(T2(R)): R is a line on x}.

The proof is the dual of the previous proof and is omitted.

By Lemma 4.3, G, is doubly transitive on the singular lines through x. The
group P.. = P(I'y(x)) is a Sylow p-subgroup of G(['2(x)U{x}). By the Frattini
argument, N(P,,), is doubly transitive on the set of p + 1 subgroups of P., and
induces at least SL(2,p) on P...

In view of the action of N(P,,), on P,, there is a 2-element t € N(P,.). N
N(Py~) which inverts P,, and centralizes Pun/Z. Then t normalizes each of the
p + 1 subgroups of P., corresponding to the lines on x and so ¢t € G(I'(x)).
Similarly there is a 2-element ' # t with t'€ N(Pu~). N N(P..) which inverts
Pu~ and centralizes P../Z. Then t' € G(I'\(L)). We assume that (t,¢") = N(P.n)
is a 2-group.

Now tt' centralizes Z and inverts P,n/Z. Hence tt'€ G(['(x))N G('(L)).
For y € L —{x}, the element #t’ fixes I',(y) and so fixes one of the p lines # L on
y, say L,. Since #' fixes L, —{y}, it fixes one of the p points of L,—{y}. Now
Z = Puna = P(I'(y)) and is transitive on L,—{y}, lest Z fix a and i with
d(a,i)=6. Since #t' centralizes Z, it follows that #t'€ G(I'\(L.)). Similarly for



324 A. YANUSHKA Israel J. Math.

u €L —{x,y}, the element #'€ G(I'\(L,)) forsome L, #L onu Leti€ L, -
{y}andj € L,—{u}. Since 1’ fixes I'\(j), it fixes one of the p lines # L, on j, say
K. Because d(j, i) = 6, it follows that d(K,i)=5. Let K, m,, K,, m,, K,, i be the
unique path of # joining K to i. Then #' must fix this path. Otherwise the
vertices i, my, m,, 1t'(m,), tt'(m.) form either a quadrangle or a pentagon of ¥
since tt' fixes the line K and the vertex i, a contradiction. Thus #t’ fixes the
vertices of the hexagon y, «, j, m,, m,, i. In particular 1’ fixes L = R(uy) and
K, = R(mm,) with d(L, K,) = 6. Since #’ fixes all points of L and all lines on
x € L, it now follows by Lemma 4.6 that ##' = 1. This contradiction completes the
proof of Theorem 1.2.
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